LEO Satellites for PNT The Next step for Precise Positioning Applications September 2022

ION GNSS+ 2022

Session E3: All-source Intelligent PNT Method

A. Gonzalez, G. Tobías, I. Rodriguez, F. Sobrero, E. Carbonell, D. Calle, J. Fernández GMV - Spain

LOW EARTH ORBIT SATELLITES FOR PNT SYSTEM CONCEPT SCENARIOS OVERVIEW PRELIMINARY RESULTS

CONCLUSIONS

LOW EARTH ORBIT SATELLITES FOR PNT

© 2022 GMV Property – All rights reserved

WHY LEO CONSTELLATIONS FOR PNT

Introduction

- GNSS constellations comprise constellations of L-Band satellites with different orbit types
- GPS, Galileo, Glonass rely in Medium Earth orbit (MEO) constellations
- QZSS, NavIC, BeiDou added Inclined Geosynchronous (IGSO) and Geostationary (GEO) satellites to increase visibility over certain areas.
- GNSS applications, and in particular High accuracy solutions (PPP-RTK) have been experimenting a growing demand over the past years, with current solutions showing some technical drawbacks / limitations
- Concept of LEO constellations introduced to expand GNSS portfolio!

LEO PNT BEYOND PUBLIC SYSTEMS

New Players

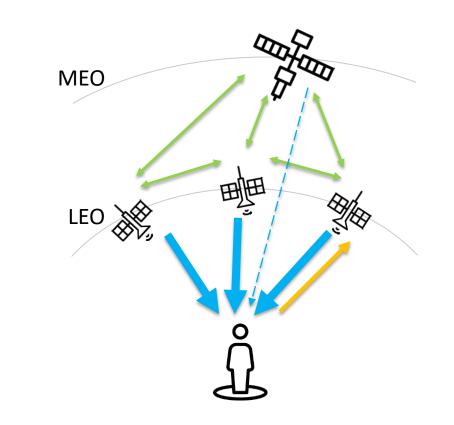
- LEO PNT concept does not only comprise current GNSS
 Systems' evolutions, as it is foreseen for BeiDou and
 Galileo
- Private parties are already present in the LEO satellite market for different applications; Communications (Iridium, Starlink, Kuiper, OneWeb, Telesat) Earth Observation (Spire, Planet, BlackSky)
- Several companies are already undertaking the steps to enter into the LEO GNSS/PNT domain, such as Xona, Trustpoint, Satelles, Future Navigation Technology
- Great challenge for interoperability in user positioning technologies!

© 2022 GMV Property – All rights reserved

LEO PNT CONSTELLATIONS

Several benefits targeting end users

- Approach is based on Walker constellations (equal circular orbits with polar inclination and evenly spaced RAAN)
 - ✓ High number of satellites (~100-1000)
 - ✓ High latitude coverage (due to orbit inclination)
- High power signal (wrt. MEO or GEO signal transmission)
- Usage of different frequency bands for indoor penetration (UHF/VHF) or reduced multipath (Ku/Ka)
- □ Possibility for up-link and down-link communications



LEO PNT CONSTELLATIONS

Use Cases

- Wearables, IoT, Asset tracking
 Higher signal power
- Urban mobility Additional signals, improved geometry
- Coverage at High latitudes
 High inclination or polar orbits
- □ **Timing applications** As an alternative source for 5G synchronization
- Enhancement of Galileo OS
 Measurements for OD&TS process
- Emergency Services or Monitoring Satellite return link

...

...

.....

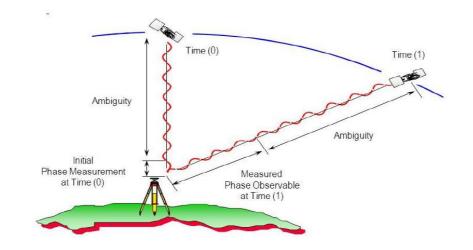
BENEFITS FOR HIGH ACCURACY

Position solution Convergence

- ≻ <u>RTK</u>:
 - ✓ Practically instantaneous convergence
 - X Ground infrastructure required (~50km)
- <u>PPP</u> (Standard solution with orbit & clock corrections)
 - $X \sim 30/40$ min for convergence
 - ✓ Global corrections
- PPP ambiguity Fixing
 - ✤ ~10 min for convergence
 - ✓ Global corrections (code and phase biases)
- ➢ <u>PPP-RTK</u>
 - ✓ Instantaneous convergence
 - X Regional stations needed (lower density than RTK)
 - X Bandwidth needed (ionospheric corrections)
- PPP with LEOS: See next slide

ambiguity values is key to obtain cm level accuracy

□ For positioning solutions based in phase


Estimation is directly related with Satellite-User relative dynamics

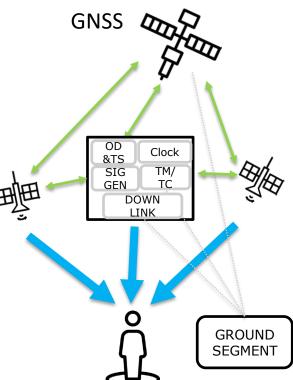
measurements, the estimation of the measurement

HIGH ACCURACY SERVICE

Why LEO PNT can contribute to fast convergence

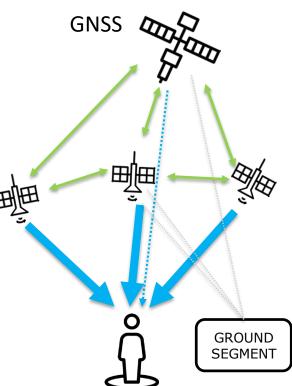
- □ MEO, IGSO and GEO operate in high orbits
 - IGSO/GEO ~ Altitude 36.000 km (3 km/s)
 - •MEO ~ Altitude 26.000 km (3.9 km/s)
 - •LEO ~ Altitude 1.000 km (7.8 km/s)
- □ Rapid geometric change of the LEO satellite with respect to the user station can remove atmospheric correction's dependency.

$$\emptyset = \lambda N + c \cdot (t_{RX} - t_{TX}) + T - I(f) + \varphi_{TX}(f) - \varphi_{RX}(f) + \varepsilon_{d}$$



SYSTEM CONCEPT OF OPERATIONS

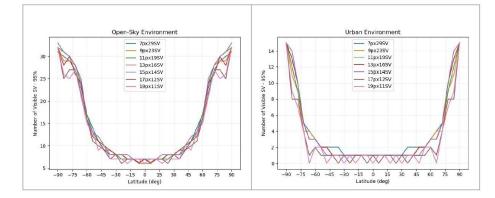
© 2022 GMV Property – All rights reserved

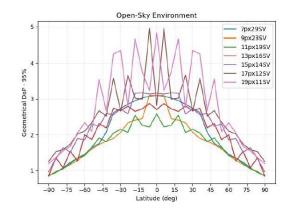

SYSTEM CONCEPT OF OPERATIONS LEO-PNT OP#1

- Objective: Alternative PNT for resilience and robustness (as a backup to E-GNSS)
- Use Case: User is denied direct access to Galileo and GPS (interference, spoofing, severe local effects, system unavailability)
- Constellation: Medium Size LEO constellation
 - > 200 satellites polar orbit
 - Altitude 1200 km
- □ Concept of Operations:
 - OD&TS is performed on board of each LEO satellite through measurement acquisition of GNSS signals (GPS/GAL)
 - Sufficiently stable on board clock can bridge temporary outages in GNSS services
 - LEO satellites perform signal generation in frequency bands over and below
 L-Band to accomplish frequency diversity
 - User can provide a position from at least four LEO satellites

SYSTEM CONCEPT OF OPERATIONS LEO-PNT OP#2

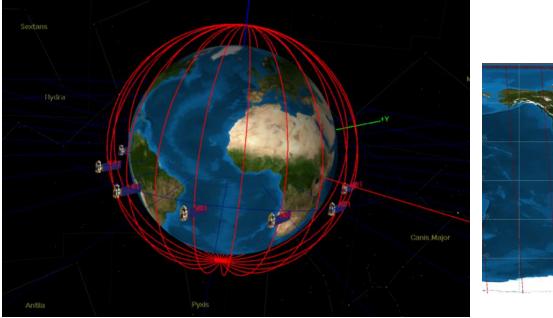
- □ Objective: Augment E-GNSS services for enhanced performance
- Use Case: User can have access from LEO and either Galileo and GPS GNSS constellations
- Constellation: Medium Size LEO constellation + GPS + Galileo
 - > 200 satellites polar orbit
 - Altitude 1200 km
- □ Concept of Operations:
 - Improved performance achieved using Ku/Ka-band links (high bandwidth, directive user antennas, improved local multi-path suppression)
 - > Service availability and Service continuity in urban canyons
 - <u>Faster convergence</u> for high precision users (offering orbit, geometry, frequency diversity)
 - > Allows Galileo/GPS signal simplification if LEO PNT system is in place

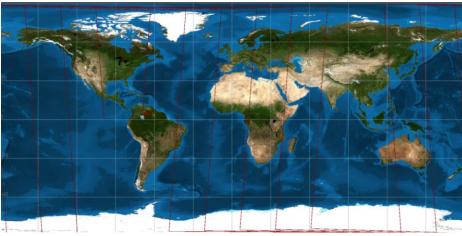

SCENARIOS OVERVIEW


PROPOSED SYSTEM

Selected LEO constellation

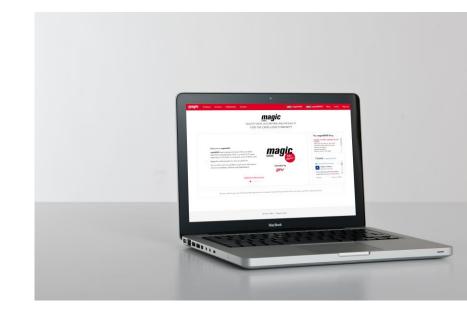
- Medium size Walker constellation (~200 satellites in polar orbit, 1200 km altitude)
- Several constellations have been studied for 2 different scenarios (OS, Urban)
- Key indicators are the <u>Number of Satellites</u> in View and <u>Dilution of Precision (DOP)</u>


Nomenclature	Number of planes	Satellites per plane
7px29SV	7	29
9x23SV	9	23
11px19SV	11	19
13px16SV	13	16
15px14SV	15	14
17px12SV	17	12
19px11SV	19	11



PROPOSED SYSTEM

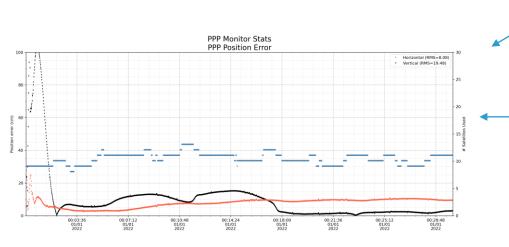
11px19SV

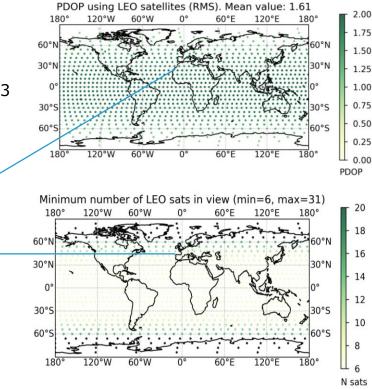


PROPOSED SYSTEM

Simulation of PPP convergence

- □ Main drawback of PPP vs RTK is convergence time
- Addition of GNSS LEO satellites to the scene will remove the precise atmospheric correction's dependency: the user shall have:
 - ✓ Process higher dynamics satellites
 - ✓ Greater capacity to differentiate local errors
 - ✓ Mitigate un-modelled effects like multipath
- □ Simulations prepared for OP#1 and OP#2:
 - > Constellation simulation: *focusSuite*®
 - > PPP solution: *magicGNSS*®

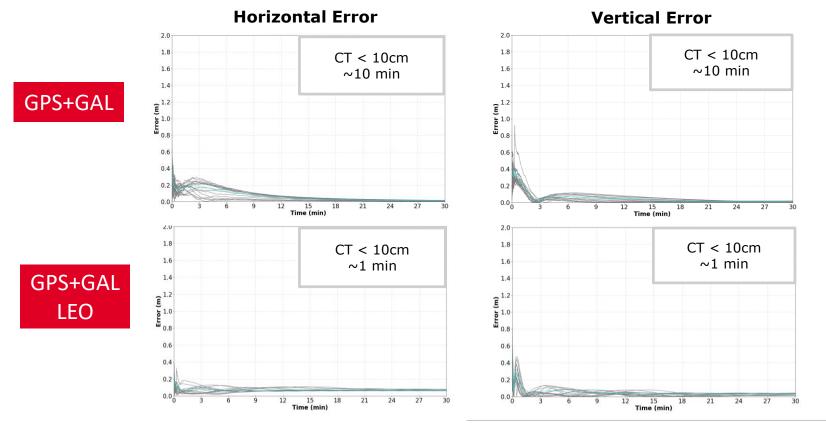

PRELIMINARY RESULTS


© 2022 GMV Property – All rights reserved

TEST SCENARIOS

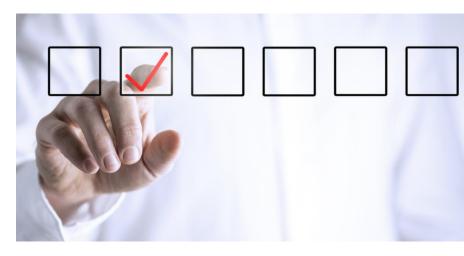
OP#1 Geometry and performance

- DOP and Availability show best values in higher latitudes
- □ Simulation CEBR IGS station, Spain (Latitude 40,45°)
- □ Number of satellites shows periodic pattern, min=8 max=13
- □ Horizontal error below 20 cm, sensitive to local geometry



TEST SCENARIOS

GMV orbit and products can provide added value to serve these new PNT services


OP#2 Positioning performance (Fast convergence)

CONCLUSIONS

□ Increasing interest in LEO satellite market

- LEO PNT appears as a solid alternative to enhance current GNSS systems or even used as standalone system backup
- Preliminary analysis show promising results in PPP fast convergence, removing the need for atmospheric corrections
- Further analysis on diverse challenging using scenarios, testing different constellation geometries will follow up
- This concept will engage players across all levels of GNSS panorama
- □ GMV is in a privileged position to generate corrections to serve these new services

gmv.com

Thank you!!

agonzalez@gmv.com

© 2022 GMV Property – All rights reserved