A Safety Processor to guarantee integrity of High-accuracy products

ION GNSS+ 2022

Session: Advances in High Precision Positioning

P.F. Navarro, I, Rodríguez, H.S. Martínez, D. Calle, F.J. Sobrero, GMV - Spain

SAFE AND ACCURATE GNSS FOR ADAS CORRECTIONS SERVICE INTEGRITY MONITORS RESULTS EXAMPLES CONCLUSIONS

SAFE AND ACCURATE GNSS FOR ADAS

GNSS TECHNOLOGIES FOR ADAS

High Accuracy Positioning Sub- decimiter Level Absolute Positioning Other technologies only provide differential positioning Robust Safety Case High maturity (SOTIF-like) reached and demonstrated in applications for civil aviation Key for ISO26262 safety argumentation

0

GIobal Coverage GNSS Availability EVERYWHERE

Independency This technology is independent from other sensors in the car Velocity GNSS provides absolute velocity of the vehicle

Orientation GNSS provides orientation values when integrated with IMU

GNSS trajectory

GNSS is currently a booming technology, with years of maturity, acting as the technological solutions for a wide variety of sectors. Many countries are investing on developing their own Navigation Systems, proving its worth

SAFE & ACCURATE GNSS FOR ADAS

Key Performance Indicator	Value
Horizontal Accuracy	< 10 cm RMS
Cold Convergence Time	< 30 sec
Hot Convergence Time	Almost Instantaneous
Dead Reckoning	Limited Degradation
Service Availability	> 99.9 %

	Key Performance Indicator	Key Performance Indicator Value	
	Integrity Risk (TIR)	Up to 10-7 per hour	
Integrity Requirements	Horizontal Protection Levels (PLs)	2 – 5 meters (TIR dependent)	

High Accuracy Requirements

ROAD STANDARDS

In-car Functional Safety

Safety of the Intended **Functionality** SOTIF 21448 ISO/PAS

Cybersecurity and Security Measures

4

2143

SO/SAE

E2E SOLUTION FOR ADAS

SAFE AND ACCURATE GNSS FOR ADAS

CORRECTIONS SERVICE INTEGRITY

CS CONTRIBUTION TO GNSS INTEGRITY

- Failure modes affecting the corrections are detected and removed so that corrections transmitted to users are faultfree.
- GNSS satellite or constellation failures, degraded ionospheric conditions (e.g. ionospheric storms) are detected and users warned
- Corrections Service contributes to Positioning Engine PL computation through integrity bounds on the corrections errors.
- Corrections Service sends integrity flags to users within the corrections message

CS SAFETY ARCHITECTURE

- □ CS uses "correct then monitor" approach
 - Corrections Processor computes corrections but does not assures its integrity
 - Safety Processor checks the corrections generated by the Corrections Processor and computes integrity bounds
- Safety Processor follows safety development standards (ISO26262 ASIL-B)
- Safety case developed for CS to assure it meets the integrity requirements
- Safety Processor implements monitors to detect the feared events affecting orbit and clock, phase bias and ionospheric corrections
- Safety Processor uses GNSS data from monitoring stations to check corrections

SAFETY PROCESSOR VALIDATION

- □ Safety Processor validation based on:
 - Fault-free scenarios (real data) to characterize monitors observables and set thresholds
 - Simulated faulty-scenarios to test detection of failure modes
 - > Analytical argumentation

□ Fault-free validation:

- > Based on real GNSS data
- Replay tool (SPFastKernel) used to process recorded scenarios
- Monitor Characterization tool used to tune the monitors and check the test observables

SAFETY PROCESSOR VALIDATION

□ Faulty scenarios validation:

- FE Genration tool has the capability to introduce failure modes (Feared Events):
 - Large errors in orbit & clock, ionospheric, phase bias corrections France
 - Ionospheric Storms
 - Satellite failures
 - Wrong monitoring data

Injected feult	FE Tool Component	Megnitude	Duration of oventr	Humber of configured events	Target Munitur
					121
Largo Orbit Errar	Orbit as & Clack Carroctions (2.1.1)	RADIAL - 40-9.5m, 5m ALONS - 49-1m, 2m OROSS - 49-1m, 2m OLOOK - 49-1m, 2m	Saisstar	Testallitae	DFRE
SatulDa clack jawa	Setolike Junge (2.2.2.3) Orbit and Olack Carrections (2.1.1)	SatJange:EventTypo-clack, 40-15m,3m 000Curri 0100K + 40-15m, 2m	10 minutes	2. atulitar	DFRE
SatelDis manageme	Orbit and Clark Carrections (2.1.1)	ALONG-at-tendr, Zendr, 59-tendr, Zendr	Ilminator	Zentallitae	DFRE
Larcolana carroctiane orrar	lasa Carrections (2.1.4.1)	LOS - x0-0.5, fm LOS - 50-2 cm/r, 5 cm/r LOCATION - M-0.5 m	Minister	For each type of event, 2 zimult encour la cotion end 2 zotelliter	10190
Spotial, Temporal Threat	Iana Corrections (2.1.4.2)	Scoverie 17 Mor 2015	- 246	N/A	10110
Large Phase bisses errors	Phase Biar Connections (2.1.3)	aLS-0.4 cyclar IVIL-0.4 cyclar	Mulasta	Szatolikur L1, Szatolikur ML, favorlap	PHD
Signal Distantian	Satullita Junge (2.2.2.3)	eð Sm. Set leus SNR	R	ZentalDiar, an avorlap	TED
Prevalarange antilieer	LaS Jange (2223)	OhrType-Preudermer, Chennel-L1, e0-5m, 19m	51-211	Zentallitae & Set atione, na averlap	SPY
Carriershare autier	LaS Jamar (2.2.2.1)	OhrType-Cerrior-phere, Chernol-LL 48-0.2m, 0.5m	5r-30r	Zz etallitar & Sztetienz, na averlop	SPY
Depplorentiers	LaS Junar (2.2.2.1)	ObsType-Dappler, Channel -15, 48-0.2m/s, 0.5m/s	51-347	2 setollitar & Exteriore, na averlige	599-
houffician Statian Date	levelfisient Data (2.2.5)	PREJ-1002		Lock of 60to for 30% of restance glabal and regimed, at different intervale	DEREVIONO / PHEVEIAS
Wrang Ispot Station Clack Date	Wranglapst Station Parameters (2.2.4)	PeranType-CLOCK, al-2m	20 minuter	Zetatione, no mourles	-\$P1
Wrase Ispot Station Trape Dates	Wrangingut Station Parameters (2.2.4)	ParenTypo-HVD, al-1m	30 minuter	Estatione, no providep	SPY
Wrang Input Station Ambiguities	Wranglapst Station Parameters (2.2.4)	PeranType-FAMB, et-In PeranType-MLAHD, e0-In	30 minuter	Estations and Estatellitus, numerorlap	5#7
Wrang lap of Station Inter- Frequency Risear	Wanglapot Station Paramotors (2.2.4)	PeranType-IFD, c0-4m	30 minutes	Estations, na possilap	584
Wranglay of Station Inter- contain Bise or	Wranglapst Station Parameters (2.2.4)	PeranType-ISBIAS, at-2m	20 minuter	Zetations, no overlap	SPV
			1		
High prowder en go naire in	1001 001 00 http://	ObeType-previousnesses - In-	24.1.4	Test Thus commutes	NUME

MONITORS RESULTS EXAMPLES

ORBIT & CLOCK MONITOR

- □ Main goal is to detect faulty orbit & clock corrections
- □ Main test observable based on GNSS residuals
 - Very good sensitivity to corrections errors, as required for high-accuracy applications

- Integrity bounds computed for radial+clock, along-track and cross-track corrections
 - > Bound projected to user range < 10cm

GPS PHASE Normalized DFRE Observable

ORBIT & CLOCK MONITOR

D Example of detection in faulty corrections: Cross-track correction component offset during 5 minutes

© 2022 GMV Property – All rights reserved

Page 19

ORBIT & CLOCK MONITOR

Example of detection in faulty corrections: Along-track ramp error during 10 minute

Fault-free

IONO MONITOR

- □ The goals of the IONO monitor are:
 - > Detect faulty ionoispheric corrections from CP
 - > Detect degraded ionospheric conditions
- □ Showing: Test residuals of observations from monitoring stations

Showing: Detection of faulty corrections with test observable

> Good sensitivity to correction errors

CONCLUSIONS

CONCLUSIONS

- GMV has developed a Safety Processor to assure the integrity of its Corrections Service
- Stringent development process and safety standards (ISO26262, SOTIF) followed
- Safety Processor has capability to detect errors in the required range for Highaccuracy applications
- **Ongoing activities:**
 - ✓ More testing
 - ✓ Certification (TÜV-SÜD)

gmv.com

Thank you!!

