magicGNSS Precise Product Provision for LEO POD Applications September 2020

ION GNSS 2020

Session B4: GNSS Applications in Space

D. Calle

L. Martínez

G. Tobías

INTRODUCTION GMV INFRASTRUCTURE SERVICE PROVISIONING SPECIFICATIONS SERVICE MONITORING SERVICE PERFORMANCES CONCLUSIONS

INTRODUCTION

INTRODUCTION

magicGNSS Product Provision Service has been designed to provide

precise satellites' orbit&clock parameters, together with Earth Orientation

Parameters with a **very low latency**.

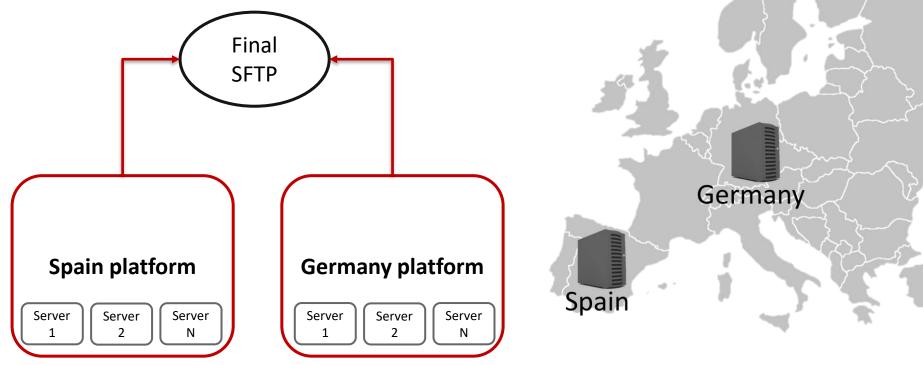
For this purpose, files containing the information are typically uploaded to a **SFTP** server.

Currently, this service is supporting, among other:

- Various EUMETSAT Radio Occultation missions

(<u>https://www.eumetsat.int/website/home/Satellites/FutureSatellites/EUME</u> TSATPolarSystemSecondGeneration/index.html)

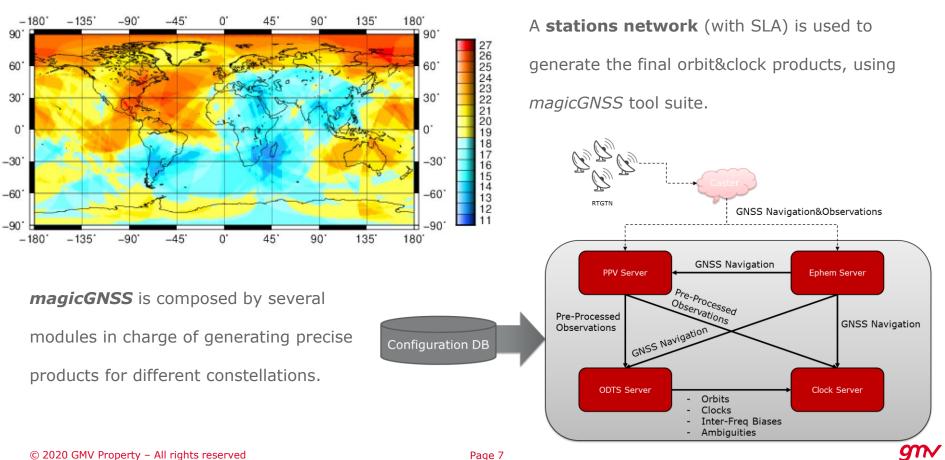
- Sentinel Mission for ESA (<u>https://sentinel.esa.int/web/sentinel/about-</u> sentinel-online)



GMV INFRASTRUCTURE

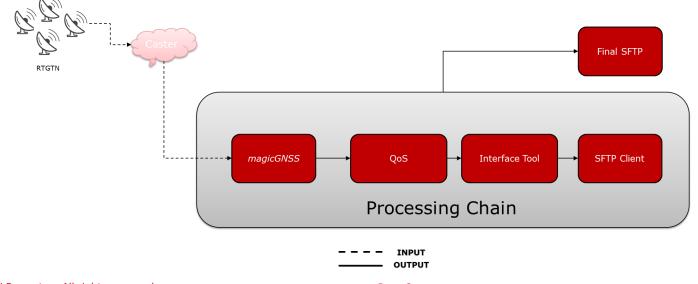
GMV INFRASTRUCTURE

One important point of this service is the **availability and redundancy**, so an infrastructure using different


platforms located in two different countries has been designed for this purpose.

© 2020 GMV Property – All rights reserved

gn


PRODUCT PLATFORMS

PRODUCT PLATFORMS

Apart from *magicGNSS*, there are other modules in charge of:

- checking the **Quality of Service** with weighting factors between different servers to optimize quality and availability
- generating the **final product** with the desired format using the outputs from magicgnss modules
- sending the final product through **SFTP** to the client

SERVICE PROVISIONING SPECIFICATIONS

SERVICE PROVISIONING SPECIFICATIONS

Service is focused on **standard formats to maximize compatibility**.

Detailed **service tailoring has been performed** to cope with each customer's specific needs.

Main file-based products are:

Product	Frequency	Latency	Rate	Estimation Arc Coverage	Prediction Arc Coverage	Format
SP3 orbits and clocks	10/15 minutes	2 min	30 sec	24 hours	24 hours	SP3c/d
RINEX Clock files	10/15 minutes	2 min	10 / 30 sec	24 hours	24 hours	RINEX clk v3.02
EOP	Hourly	2 min	12 hours	4 days	3 days	IERS
Navigation RINEX	Hourly	2 min	Depending on the constellation	24 hours	-	RINEX nav v3.02

Another important point of a Near Real Time service is the monitoring of the system itself. In order to do that,

several technologies are used:

- Nagios and Prometheus for Real-Time alerts.

gn/ Nagios NAGIOS TC Search Host Status Totals Service Status Totals Current Network Status Last Updated: Fri Sep 11 06:31:50 UTC 2020 Up Down Unreachable Pending Ok Warning Unknown Critical Pending Tactical Overview Updated every 90 seconds 0 0 0 0 0 Nagios® Core™ 4.4.3 - www.nagios.org ▶ Host Detail Logged in as rsn All Problems All Types All Problems All Types Service Detail 0 0 21 View History For This Host View Notifications For This Host ▶ Hostgroup Overview View Service Status Detail For All Hosts Servicegroup Overview Service Status Details For Host 'tc-igs' ▶ NagVis Limit Results: 100 V Host ... Last Check 😽 Duration 😽 At Service Problems (nACK) tc-igs Active Users 09-11-2020 06:29:09 226d 23h 14m 48s 1/4 USERS OK - 0 users currently logged in 09-11-2020 06:26:47 224d 23h 15m 39s 1/4 OK - user: 1.99, nice: 0.50, svs: 0.69, iowait: 0.50, irg: 0.50, soffirg: 0.54 idle Host Problems Load of Processe 09-11-2020 06:26:55 227d 23h 18m 57s 1/4 OK - load average: 0.68, 1.05, Network Outages 09-11-2020 06:30:09 2d 14h 54m 46s 1/4 OK - 15.4% (5030744 kB) free Memory NTP proces 09-11-2020 06:28:22 224d 23h 15m 42s 1/4 PROCS OK: 1 process with aros into 09-11-2020 06:27:28 129d 4h 11m 28s 1/4 NTP OK: Offset 0 05594956875 secs ▶ Process Info PING 09-11-2020 06:29:49 1d 14h 18m 5s 1/d PING OK - Packet loss = 0% RTA = 0.36 m Partition / DISK OK - free snace: / 328174 MB (36 92% inode=999 09-11-2020 06:27:40 226d 23h 15m 11s 1/4 Scheduling Queue RT Clocks Consistency 09-11-2020 06:24:07 9d 22b 22m 48s 1/4 11/09/2020-05:30 CLOCK Consistency | GPS = 0.028383 ns. Galieo = 0.037454 ns | /data/output rtclk/Core/2020/255/rtck sum20200911 0530.bd • Px Network monitorin **RT Clocks Phase Residuals** 09-11-2020 06:27:04 36d 0b 19m 50e 1// 11/09/2020-05:30 [0 < Phase RMS = 0.01187 < 0.03] /data/output_rtclk/Core/2020/255/rtck_sum20200911_0530.tx RT Clocks Product Gaps 09-11-2020 06:26:49 364 1h 0m 13e 1// oĸ RT Clocks Product Generatio 09-10-2020 08:26:37 185d 23h 40m 32s 1/4 [rtck_sat20200910.clk] and [rtck_oss20200910.clk] Exist and are not empty in /data/output_rtclk/Core/2020 ▶ Trends RT Clocks Summary 09-11-2020 06:28:18 36d 0h 23m 34s 1/4 11/09/2020-05:30 [rtck sum20200911 0530.txt] Exists and is not empty in /data/output rtclk/Core/2020/255 Availability Generation RT ODTS Consistency 09-11-2020 06:22:30 6d 10h 25m 21s 1/4 11/09/2020-05:30 Orbit [GPS = 0.537903 cm, Galileo = 0.781904 cm] Clock [GPS = 0.018564 ns, Galileo = 0.026532 ns] (/data/output_odts/Core/2020/255/odts_sum20200911_0530.t Alert Histogram RT ODTS Phase Check 09-11-2020 06:25:17 42d 2h 21m 40s 1/4 11/09/2020-05:30 [0 < Phase RMS = 0.00973 < 0.02]/data/output_odts/Core/2020/255/odts_sum20200911_0530. Alert History RT ODTS Products Check 09-11-2020 06:27:29 42d 2h 29m 29s 1/4 11/09/2020-05:30 [odts (sum, rei, info, sat, tim, oss, est, ecp, prd, pcp)] Files exist and are not empty in /data/output_odts/Core/2020/2 Alert Summary RT ODTS est file Generatio 09-11-2020 06:30:24 42d 2h 31m 30s 1/4 11/09/2020-06:00 GPS and GALILEO are used /data/output_odts/Core/2020/255/odts_est20200911_0600.sp2 RT PPV Station Gaps 09-11-2020 06:29:20 1d 5h 58m 35s 1/4 Less stations than expected have sumassed max can of 1s # over 1s; 13] and 5s # over 5s; 13] in analysed period (10 min) [Total: 461; ► Event Log Less stations than expected have surpassed max lat 251 RT PPV Station Latency 09-11-2020 06:31:33 2d 13h 0m 20s 1/4 Configuration Reboot Required 09-11-2020 06:30:58 51d 0h 21m 4s 1/4 OK: no reboot required ▶ View Config Total Processes 09-11-2020 06:29:09 224d 23h 15m 37s 1/4 PROCS OK: 187 processes with STATE = RSZD

Results 1 - 21 of 21 Matching Services

Another important point of a Near Real Time service is the monitoring of the system itself. In order to do that,

several technologies are used:

- **Grafana** for HW and system Real-Time monitoring.

Another important point of a Near Real Time service is the monitoring of the system itself. In order to do that,

several technologies are used:

- **Grafana** for performances analysis.

SERVICE PERFORMANCES

SERVICE PERFORMANCES - SUMMARY

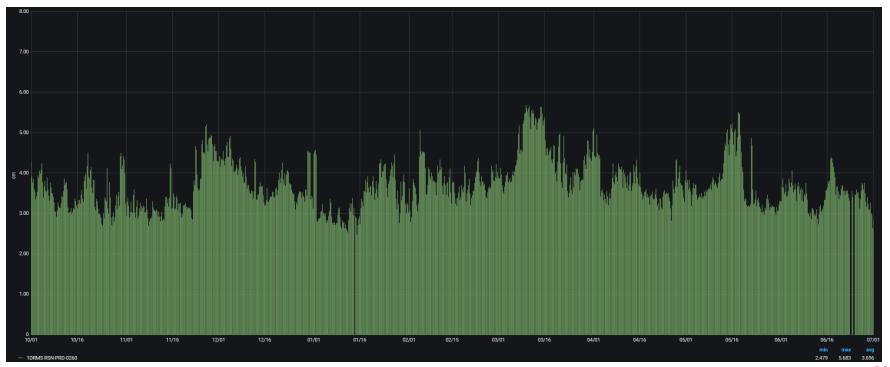

Performaces summary for GPS and Galileo constellation from 1st of October 2019 to 1st of July 2020

Product	Constellation	Min	Max	Mean
Orbits (RMS)	GPS	1.4 cm	1.9 cm	1.7 cm
Clocks (Sig)		0.05 ns	0.07 ns	0.06 ns
Orbits (RMS)	Galileo	2.4 cm	5.6 cm	3.6 cm
Clocks (Sig)		0.03 ns	0.23 ns	0.11 ns

SERVICE PERFORMANCES – ORBITS

Orbit performances from 1st of October 2019 to 1st of July 2020

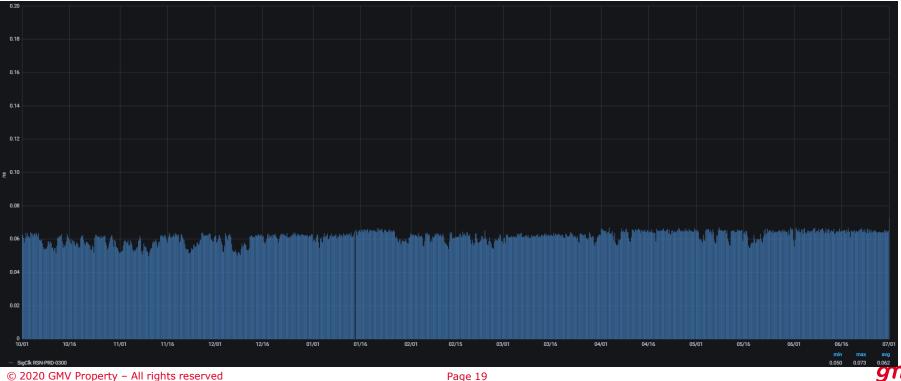
Analyzing the 24 hour of the estimation arc of each product delivered every 10 minutes



SERVICE PERFORMANCES – ORBITS

Orbit performances from 1st of October 2019 to 1st of July 2020

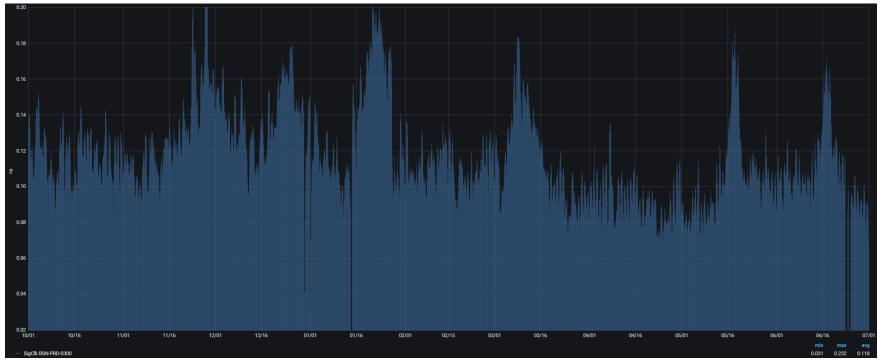
Analyzing the 24 hour of the estimation arc of each product delivered every 10 minutes


© 2020 GMV Property – All rights reserved

gn

SERVICE PERFORMANCES - CLOCKS

Clock performances from 1st of October 2019 to 1st of July 2020


Analyzing the 24 hour of the estimation arc of each product delivered every 10 minutes

SERVICE PERFORMANCES - CLOCKS

Clock performances from 1st of October 2019 to 1st of July 2020

Analyzing the 24 hour of the estimation arc of each product delivered every 10 minutes

© 2020 GMV Property – All rights reserved

gπ

CONCLUSIONS

CONCLUSIONS

- Precise GPS products with reduced latency are becoming more and more demanded for Atmospheric, Oceanic, Land, Climate Change monitoring Missions.
- Latest missions are equipped with multi-GNSS receivers on-board, being able to provide **accurate**

products for all GNSS constellations is crucial.

- Availability and continuity are critical for not impacting the LEO missions.
- GMV has managed undertake these challenges and develop and operate an infrastructure **capable**

of coping with the aforementioned needs.

gmv.com

Thank you!!

