ASSURED PRECISE POINT POSITIONING TECHNIQUES DRIVING THE FUTURE September 2020

ION GNSS+ 2020

Session B4: GNSS Applications in Space

D. Calle, E. Carbonell, A. Chamorro, A. González, C. Mezzera, P. Navarro, D. Rodríguez, I. Rodríguez, G. Tobías GMV - Spain

- AUTONOMOUS DRIVING OVERVIEW
- SAFE POSITIONING IN AUTONOMOUS DRIVING
- GMV's PE IN AUTONOMOUS DRIVING
- PLUG&PLAY DEMO UNIT
- PERFORMANCE TESTING RESULTS
- CONCLUSIONS

AUTONOMOUS DRIVING OVERVIEW

AUTONOMOUS DRIVING OVERVIEW

Driving automation levels:

- Level 0 \rightarrow Like defined by Henry Ford \odot
- Levels 1-2
 - L1: The car is able to assist: cruise control, lane-cross detection
 - L2: The car is able to perform steering and acceleration, but with human monitoring.
- Levels 3-5
 - L3: The car performs environment detection and most driving tasks but with human overriding (steering, acceleration, lane change...).
 - L4: The car executes all driving tasks under certain circumstances/environments.
 - L5: Zero human attention.

The 5 levels of driving automation For on-road vehicles Automated system Human driver Fallback when Automated Steering and Monitoring acceleration/ of driving automation system is in deceleration environment control NO AUTOMATION 0 Human driver nonitors the road SOME DRIVER DRIVING ASSISTANCE MODES SOME PARTIAL 2 DRIVING AUTOMATION 0 MODES CURRENT STATE SOME CONDITIONAL 3 DRIVING Automated driving system monitors the road AUTOMATION 0 0 0 MODES HIGH AUTOMATION 0_0 FULL 5 AUTOMATION 0 0 Ver Source: SAE International

© 2020 GMV Property – All rights reserved

Functional 21448 SO/PAS

Safety of the Intended **Funcitonality** SOTIF

Cybersecurity and Security Measures SO/SAE

21434

ISO26262 Automotive Functional Safety:

- Goal
 - Avoid systematic failures (bugs in HW, SW, design, tools)
 - Avoid random HW failures
 - Control exposure to risk, reaction time and behaviour in case of failure
- How
 - Control the process: mainly based on documentation and verification activities i.e. processes super-controlled.
 - Control the tools
 - Driven by ASIL level required

Road Vehicles - Fuctional Safety

SOTIF 21448 Safety of Intended Functionality:

- Goal
 - Complement ISO26262 to cover cases where there is no malfunction in the in-car HW/SW system
 - Control unintended behaviour without fault
 - Effect cause by environmental conditions (Unintentional)
- How
 - Identify the unknown and unsafe areas of operation and containing it to an acceptable level of risk.
 - Impose new requirements on sensors and monitors to reduce those areas.
 - Verification based on analysis and simulation.
 Complemented with real cases.

ISO/SAE 21434 Automotive Standard Security

- Goal
 - Reduce the risk associated to the new paradigm of connected vehicle. (A hacker can take control of bulb... but not of our cars)
 - Ensure that SW/HW development is "Secure by design".
- How
 - TARA: Identification of assets, possible threats, attacks, vulnerabilities and potential damage.
 - Determination of risk levels based on damage scenarios and the probability of successful attacks
 - Implement necessary countermeasures to reduce the remaining risk to an acceptable level.
 - SW security audits, periodic pentesting, SW patching...

© 2020 GMV Property – All rights reserved

Positioning Engine Application

- PE Application able to process GNSS + IMU
- ISO26262 ASIL-B compliant. SW faults < 1e-7
- SOTIF compliant. Control external conditions, achieving 1e-7.
- ISO/SAE 21434. Not only SW, jamming and spoofing also covered.
- Flavours: Linux standalone and Autosar application
- Fast convergence, robust and safe solution thanks to advance algorithms and threat monitors
- Protection level provision (Error bounding).
- SSR2OSR Library for integration with RTK modules

PLUG&PLAY DEMO UNIT

© 2020 GMV Property – All rights reserved

DEMO UNIT

Positioning Engine Application Demo Unit

INSIDE VIEW ENCLOSURE VIEW VISUALIZATION APP 111

Metric	Solution Type	OS	DEG1	DEG2	Σ
95%	GNSS + IMU	0.20m	0.25m	0.40m	0.25m
99.7%	GNSS + IMU	0.35m	0.45m	0.50m	0.50m

Considerations

-

- Mass-market Rx and IMU
 - Calculated against reference trajectory system (high-end GNSS, tactical IMU, dense RTK base network)
- Only considering FIX and Dead-reckoning epochs
- Number of epochs:
 ~720,0000
- gnv

SSR2OSR

- RTK performance obtained with the SSR2OSR and RTKExplorer (RTKLib variant).
- Also tested with uBlox F9P internal RTK module with similar performances.
- Only the integration of GMV's
 SSR2OSR library is required.
- Horizontal Error RMS below 10cm.

CONCLUSIONS

© 2020 GMV Property – All rights reserved

CONCLUSIONS

_

_

_

- End-to-end service for automotive applications is ready for the market.
- Safety and security compliance has been tackled based on ISO26262, SOTIF and Security standards.
- Plug&Play demonstration platform is ready for potential customers.

gmv.com

Thank you!!

© 2020 GMV Property - All rights reserved