ION GNSS+ 2018 Facing the challenges of PPP: Convergence Time, Integrity and Improved Robustness

September 27^{TH} , 2018

Session C4: Precise Point Positioning (PPP) and L-Band Services

D. Calle, E. Carbonell, P. Navarro, P. Roldán, I. Rodríguez, G. Tobías; GMV, Spain

© GMV, 2018 Property of GMV All rights reserved

OUTLINE

PPP Service Provision Infrastructure

Positioning Performance

PPP Integrity

Conclusions

PPP Service Provision Infrastructure

GLOBAL STATION NETWORK

PROCESSING CENTERS

PRODUCTS

COMMUNICATION LINK

REGIONAL STATION NETWORK

PPP USER POSITIONING ALGORITHM

ALGORITHM SPECIFICATION

- Multi-constellation/frequency capable: GPS, GLONASS, Galileo, BeiDou, QZSS
- **IMU** data processing supported
- Gap-bridging solution for fast cycle slip repairing
- Integrity algorithm (KIPL) on all estimated parameters for configurable Confidence Levels
- Standard input interfaces:
 - GNSS Data RTCM supported (including MSM)
 - Corrections information compliant with RTCM Standard
- Regional Information Processing for Fast Convergence
- Multiple barriers, weighting strategies and data correlation monitoring for measurements fault detection and exclusion

PPP Positioning Performance

POSITIONING PERFORMANCE

SERVICE SPECIFICATION

TECHNICAL SPECIFICATIONS

Supported constellations	GPS, GLONASS, Galileo,	
	BeiDou, QZSS	
Corrections' format	RTCM	
Corrections' rate	5 seconds	
Corrections' Accuracy	< 3 cm 1-D RMS (orbits)	
	< 0.06 ns Sigma (clocks)	
Convergence time	20 minutes	
Enhanced convergence time*	< 20 cm in 5 minutes	
	< 50 cm instantaneous	

Typical accuracy for double-frequency PPP

(*) Results obtained with a geodetic receiver and antenna

Typical PPP convergence time

Typical accuracy for single-frequency PPP

(*) Results obtained with a mass-market receiver and antenna

POSITIONING PERFORMANCES

DEMO ACCURACY

VIDEO LOGO

POSITIONING PERFORMANCES

CONVERGENCE TIME

- Approximately 3 months of data collected in real-time
- Static Receiver
- Open Sky
- Dual Frequency Combination
- GPS + GLONASS + GALILEO

TARGET ACCURACY	NOMINAL CONVERGENCE	ENHANCED CONVERGENCE
50 cm	3 min 36 sec	0 min 0 sec
40 cm	5 min 19 sec	0 min 00 sec
30 cm	7 min 57 sec	1 min 11 sec

CONVERGENCE ANALYSIS

Epoch

PPP Integrity

INTEGRITY INTEGRITY ALGORITHM OVERVIEW

GMV has an extensive experience in **integrity for navigation** (EGNOS, Galileo, GSBAS, ESCAPE)

Integrity for non-aviation applications requires development of new tools

GMV's Integrity solution for PPP based on **three main concepts**:

- Multiple barriers for faulty inputs detection and exclusion both at PPP server and user level
- Correction data monitoring for assured PPP augmentation data provision
- KIPL algorithm at user level to provide an integer error bound based on local effects and measurement correlation monitoring

	Aviation	PPP
Estimation Technique	Least-squares	Kalman
Local Conditions Impact	Low	High
Size of PLs	High	Small

INTEGRITY STATIC INTEGRITY ALGORITHM PERFORMANCE

HORIZONTAL Position Error & PL

$TIR = 10^{-7}$

INTEGRITY STATIC INTEGRITY ALGORITHM PERFORMANCE

FEATURES

- 10 days
- Static receiver
- Open Sky
- Dual Frequency Combination
- GPS + GLONASS

FEATURES

- 6 days
- Static receiver
- Open Sky
- Dual Frequency Combination
- GPS + GLONASS + GALILEO

INTEGRITY KINEMATIC INTEGRITY ALGORITHM PERFORMANCE

INTEGRITY KINEMATIC INTEGRITY ALGORITHM PERFORMANCE

VIDEO CAR

INTEGRITY KINEMATIC INTEGRITY ALGORITHM PERFORMANCE

PE and PL vs. Epoch - Horizontal

Conclusions

CONCLUSIONS

- GMV's magicGNSS suite is capable of delivering a state-of-the-art PPP service with a high degree of integrity
- Path firmly set towards Precise Positioning in Safety-critical Applications
- Extensively tested in real scenarios
- Already available through *magicUT*

Aure In

THANK YOU Visit us at booth 216

