#### ION GNSS+ 2018

# Strap-down Multiconstellation GNSS+Sensors Navigation in Smart Devices

September  $28^{TH}$  , 2018

Session A5: GNSS Chipset Manufacturer Showcase

D. Calle, E. Carbonell, P. Navarro, I. Rodríguez, P. Roldán, GMV, Spain



© GMV, 2017 Property of GMV All rights reserved GNSS & Smartphones

magicGNSS Evolutions

Experimentation

Conclusions and Way-Forward



Low-Cost PPP Enhanced by IMU Sensors

# SMARTPHONES &



#### GNSS & SMARTPHONES GMV IN PRECISE POINT POSITIONING



#### GNSS & SMARTPHONES GNSS CHIPS FOR SMARTPHONES

- Low-cost GNSS in our daily lives:
  - Gmaps, Waze, Car Navigation, SportTracking...
  - Currently 6B devices and growing!
  - Smart-devices market is a huge pie
  - Renewal of devices allows to introduce new capabilities
- Smartphone GNSS chips are evolving:
  - Multi-constellation
  - Multi-frequency receivers is a reality
  - Reduced power consumption
  - Carrier-phase tracking
  - Fusion with other sensors (IMU, Compass)
  - Raw measurements provision
- Market Opportunity → Accurate positioning is possible for low-cost users.

Low-Cost PPP Enhanced by IMU Sensors

Smartphones account for almost 80% of the global installed base of GNSS devices





# **WOLUTIONS** Ш





gn/°







Low-Cost PPP Enhanced by IMU Sensors















Low-Cost PPP Enhanced by IMU Sensors

#### magicGNSS EVOLUTIONS **magicPPP EVOLUTION**

- Android Application continuously evolving
- Mass-market oriented Features:
  - Support the retrieval of raw measurements provided by the internal GNSS chip and antenna through the LocationServices API (1Hz)
  - Obtain the accelerometers and gyroscope information through the Sensors API (high frequency >> 1Hz)
  - Support of Dual-frequency Mass-market receivers







# **EXPERIMENTATION**



# DEVICES UNDER TESTING - APPROACH

- Device #1 (Reference): Trimble R10 + PPP Android Application
- Device #2 (Tested): Nexus 9+ PPP Android Application
- Device #3 (Tested): Recently released Xiaomi Mi8 + PPP Android Application



**gmv**°

Low-Cost PPP Enhanced by IMU Sensors

# **DEVICES UNDER TESTING – SET UP**



Nexus 9 (perfectly fixed)

**gmv**°

Low-Cost PPP Enhanced by IMU Sensors

2017/09/27 Page 14

# **DEVICES UNDER TESTING - SCENARIOS**

- Three kinematic scenarios:
  - Nexus 9: Two Open sky + suburban conditions. Duration
    ~ 40 minutes
  - Mi8: One walking. Duration ~ 15 minutes
- Reference trajectory obtained with Trimble R10 + RTKLib when possible. Applied correction between antenna positions.

- Devices setup:
  - Nexus 9 Tablet Internal antenna and Trimble R10 placed on top of a car. Processing GPS+GLO L1.
  - Mi8. Walking scenarios held in the hands. Processing GPS+GAL L1/L5 GLO L1
- Regional corrections: magicFAST for enhanced convergence







#### Low-Cost PPP Enhanced by IMU Sensors

- Kinematic scenario:
  - Open sky + suburban conditions
  - Duration ~ 40 minutes
  - During the first 21 minutes the car is at rest
- Data from tablet's IMU too sparse to be useful
- Frequent cycle slips found in carrierphase measurements





2D RMS SF PPP: 1.51m 2D RMS SF PPP+magicFast: 0.76m







Low-Cost PPP Enhanced by IMU Sensors





Low-Cost PPP Enhanced by IMU Sensors



- Kinematic scenario:
  - Open sky + suburban conditions
  - Duration  $\sim$  50 minutes
  - During the first 22 minutes the car is at rest
- IMU data from tablet (3-axis accelerometer and gyro) at 500Hz
- Tablet axes aligned with car
- Frequent cycle slips found in carrier-phase measurements





2D RMS SF PPP+magicFast: 0.65m 2D RMS SF PPP+magicFast+IMU: 0.61m







Low-Cost PPP Enhanced by IMU Sensors



Low-Cost PPP Enhanced by IMU Sensors



**gm** 

Low-Cost PPP Enhanced by IMU Sensors

- Kinematic scenario:
  - Open sky
  - Duration ~ 15 minutes
  - Walking dynamics
- Comparison of L1 vs L5 performances
- Frequent cycle slips found in carrierphase measurements



- Kinematic scenario:
  - Open sky
  - Duration  $\sim$  15 minutes
  - Walking dynamics
- Comparison of L1 vs L5 performances
- Frequent cycle slips found in carrierphase measurements







- Pitch lines used as reference
- General consistency when comparing SF L1 vs DF L1-L5 (<50-60cms)</li>





Pitch lines used as reference

 General consistency when comparing SF L1 vs DF L1-L5 (<50-60cms)</li>

|   |          | Regla        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |            |
|---|----------|--------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|
| 1 | Línea    | Ruta         | Polígono      | Círculo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ruta 3D     | Polígono 3 |
|   | Medir la | distancia (  | entre dos pun | tos en el su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elo         |            |
|   | Long     | gitud del m  | apa:          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,39 Netro  | s          |
|   | Distan   | cia en el su | uelo:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,39        |            |
| e |          | Direct       | ción:         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,42 grados |            |
|   |          |              |               | ( in the second s |             |            |



Pitch lines used as reference

 General consistency when comparing SF L1 vs DF L1-L5 (<50-60cms)</li>

|                 |                                      |                        |         | 622                                | Red 1       |
|-----------------|--------------------------------------|------------------------|---------|------------------------------------|-------------|
| S               |                                      |                        | Regla   |                                    | ×           |
| Línea           | Ruta                                 | Polígono               | Círculo | Ruta 3D                            | Polígono 3D |
| Long<br>Distanc | itud del mi<br>ia en el su<br>Direcc | apa:<br>Jelo:<br>Lión: | 25      | 0,72 Metros<br>0,72<br>9,27 grados | s •         |
|                 | 1.1.1.1                              | 1.1.1.1.1.1            |         |                                    | Perror      |



# CONCLUSIONS



#### CONCLUSIONS CONCLUSIONS AND WAY-FORWARD

- Accurate GNSS navigation with smart devices is becoming possible with current and future chips
- magicPPP has a solution for smartphones/tablets. IMU data can be used to improve both quality and rate of the navigation solution
- First results with Mass-market Dual Frequency receiver are presented:
  - Work to refine results still on-going
  - Preliminary results shows that L5/E5a contributes positively to the solution.
  - With upcoming Galileo, GPS IIF/III results may be improved.
- Reduction of number of cycle slips in receivers
- Next steps:
  - Continue the work with Mass-Market Dual-Frequency Receivers to polish and consolidate results.
  - Test hybridation of Dual-frequency measurements + IMU. IMU data quality is a driver.







www.facebook.com/infoGMV
 @infoGMV