NAVITEC 2016 December 14-16, 2016 – ESA/ESTEC, Noordwijk, The Netherlands

PUSHING THE LIMITS OF LOW-COST PPP WITH REAL-TIME IONOSPHERIC CORRECTIONS

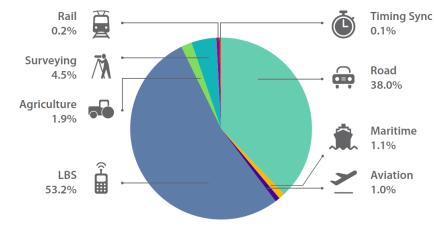
E. Carbonell, J.D. Calle, L. Martínez,

P.F. Navarro, D. Rodríguez, P.J. Roldán, G. Tobías- GMV

Presented by Enrique Carbonell - GMV

© GMV, 2016 Property of GMV All rights reserved

OUTLINE


- Motivation
- magicFAST Real-Time Infrastructure
- Experimentation Results
- Conclusions

Page 2

MOTIVATION

- Precise Point Positioning (PPP) has traditionally played an important role in surveying, farming, offshore applications...
- Jump to mass-market applications limited by:
 - Need of a professional-grade receiver
 - Multi-frequency measurements
 - Market motivation
- Recent Low-Cost Receivers:
 - Improved measurement quality
 - Still single frequency
 - Mass-market oriented

Cumulative core revene 2013-2023

Extracted from GSA Market Report 2015

Page 3

MOTIVATION

Market shows a niche opportunity for Low-Cost PPP Especially in the automobile sector for In-Vehicle Systems

- GMV has developed the algorithms and infrastructure to provide realtime PPP with single-frequency low-cost receivers
- Focused on the achievement of two goals:
 - *High Accuracy*: Provide a positioning solution with an error of few centimeters in steady state
 - *Fast Convergence*: Reach High Accuracy within a short time after the PPP algorithm is started

Initial Objective

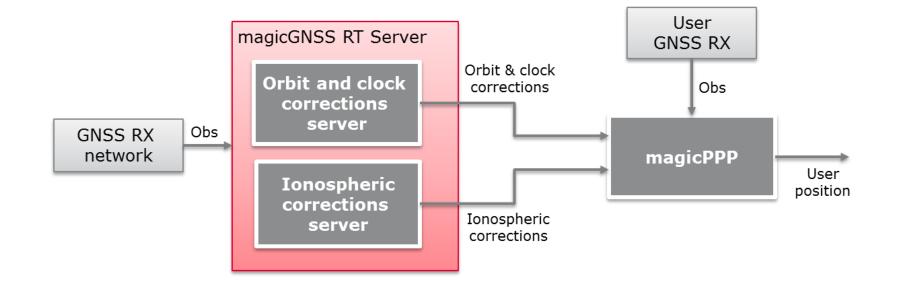
Convergence Time	Positioning Accuracy
5 min	40 cm
10 min	30 cm

NAVITEC 2016 Page 4

MAGICFAST REAL-TIME INFRASTRUCTURE

magicFAST

GMV's service of Low-Cost PPP based on Single Frequency techniques using Ionospheric Corrections


 Update of *magicPPP* to cope with peculiarities of processing measurements from low-cost receivers

NAVITEC 2016

PUSHING THE LIMITS OF LOW-COST PPP

WITH REAL-TIME IONOSPHERIC CORRECTIONS

Development of *magicFAST* server to predict ionosphere delays

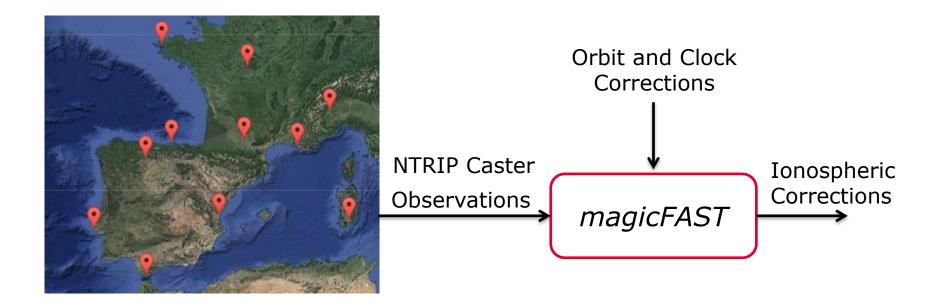
Page 5

MAGICFAST REAL-TIME INFRASTRUCTURE

magicPPP

Iono-Free
$$\begin{aligned} l_p &= \rho + c (b_{Rx} - b_{sat}) + Tr + HW_p + \varepsilon_p \\ l_\phi &= \rho + c (b_{Rx} - b_{sat}) + Tr + HW_\phi + N\lambda + \varepsilon_\phi \end{aligned}$$
Single Freq
$$\begin{aligned} l_{1p} &= \rho + c (b_{Rx} - b_{sat}) + Tr + I + HW_p + \varepsilon_{1p} \\ l_{1\phi} &= \rho + c (b_{Rx} - b_{sat}) + Tr - I + HW_\phi + N_1\lambda + \varepsilon_{1\phi} \end{aligned}$$

In addition:

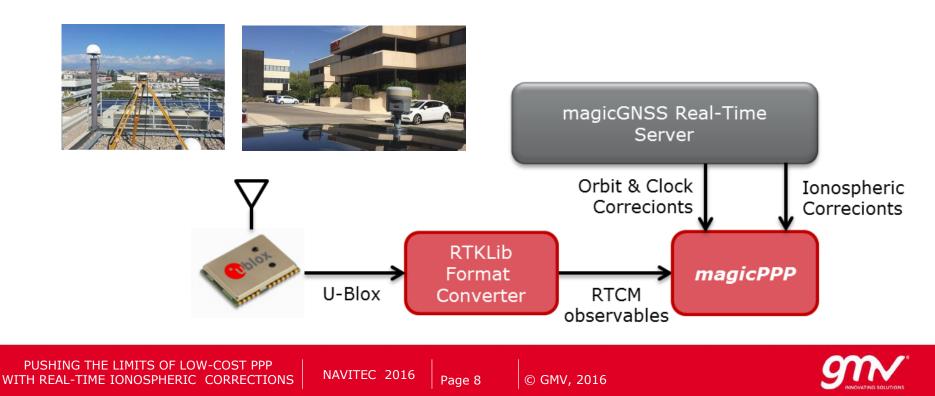

- Update of multipath rejection models for low-cost receivers and patch antennae
- Fine-tuning of PPP algorithm
 - Measurement and process noise
 - Preprocessing and validation of measurements

MAGICFAST REAL-TIME INFRASTRUCTURE

magicFAST Server

- Regional Network
- Low Station Density: 115000 km²/station
- Independent Server

Page 7

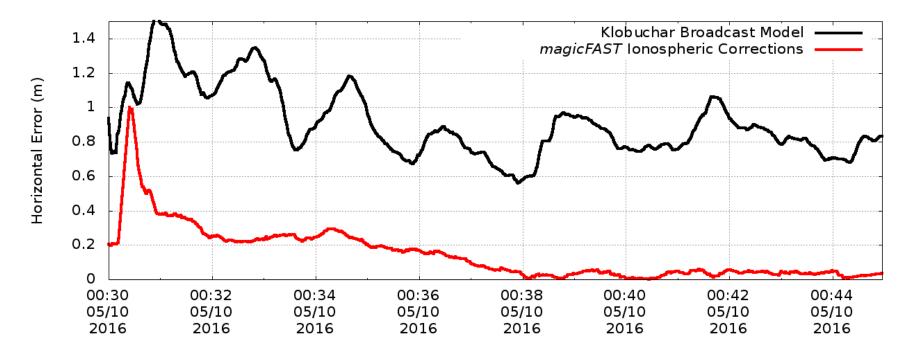


PUSHING THE LIMITS OF LOW-COST PPP WITH REAL-TIME IONOSPHERIC CORRECTIONS

NAVITEC 2016

Experimentation Set-Up

- Static open-sky benchmark scenario using choke ring antenna
 - Known calibrated position of antenna
- Kinematic tests using patch antenna
 - Trimble R10 professional-grade rover receiver used for reference trajectory generation using RTK technique


Experimentation Set-Up

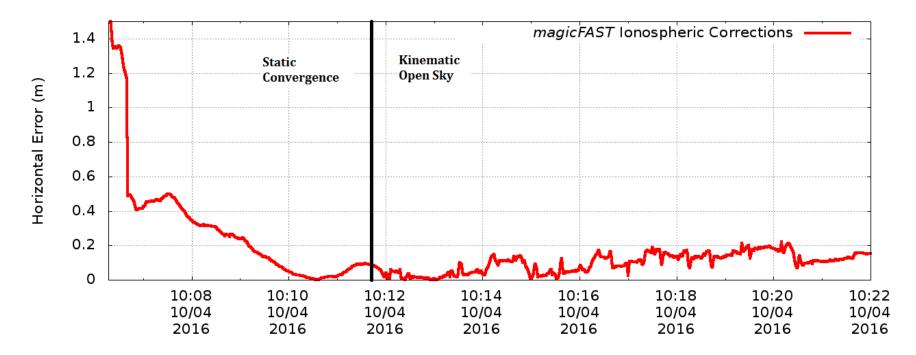
- Experimentation campaign carried out in Tres Cantos (Madrid)
- magicFAST server configured with a low-density network
- Data obtained from the European Permanent Network (EPN) provided by the EUREF NTRIP Caster hosted by ROB
- Limited to 6 stations at a maximum distance of 600 km to the user
- Closest station to user located in Leon, at a distance of 290 km

Static Open Sky Benchmark Scenario

- Horizontal positioning error below 50cm after 1 minute
- After 10 minutes, positioning error is bound by 10 cm
- Bear in mind that this scenario uses a choke ring antenna

Kinematic Open Sky

- Outskirts of Tres Cantos in a residential area with isolated buildings
- Activity related to the building sector, presence of trucks
- Testing car parked during the first 5 minutes of the test
- Patch Antenna


Page 11

PUSHING THE LIMITS OF LOW-COST PPP WITH REAL-TIME IONOSPHERIC CORRECTIONS

NAVITEC 2016

Kinematic Open Sky

- Positioning error is below 20 cm after 5 minutes
- Increased multipath inherent to patch antenna
- Peaks related to reference trajectory misalignment in bends

Kinematic Sub-Urban

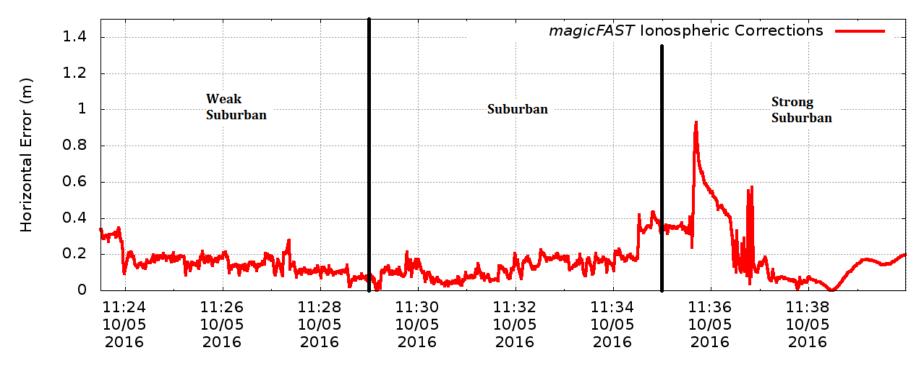
- 1. Weak Sub-urban: Tall buildings (8 stories) with low densitiy, i.e. one building every 4-5 unconstructed lands
- 2. Sub-urban: Industrial area with factories at both sides of the street. Low foliage density
- *3. Strong sub-urban*: Building occultation 20-35 deg of elevation. Typically dense folliage up to 60-70 deg

PUSHING THE LIMITS OF LOW-COST PPP WITH REAL-TIME IONOSPHERIC CORRECTIONS

NAVITEC 2016 Page 13

Kinematic Sub-Urban

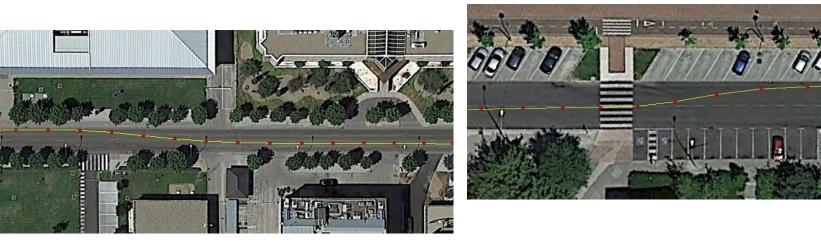
- *1. Weak Sub-urban*: Tall buildings (8 stories) with low densitiy, i.e. one building every 4-5 unconstructed lands
- 2. Sub-urban: Industrial area with factories at both sides of the street. Low foliage density
- *3. Strong sub-urban*: Building occultation 20-35 deg of elevation. Typically dense folliage up to 60-70 deg


Page 14

PUSHING THE LIMITS OF LOW-COST PPP WITH REAL-TIME IONOSPHERIC CORRECTIONS

NAVITEC 2016

Kinematic Sub-Urban



- No major issues in weak sub-urban environment
- Error increases in sub-urban environment due to increased multipath and foliage density
- Error peaks in strong sub-urban caused by dense foliage covering in zenith
- Fast reconvergence is achieved when signal quality increases thanks to ionospheric delay estimates

Lane Change Detection

- Lane-detection tests performed informally
- Urban Environment:
 - 4-story buildings at both sides of the street
 - Medium-density foliage

PUSHING THE LIMITS OF LOW-COST PPP WITH REAL-TIME IONOSPHERIC CORRECTIONS

Conclusions

- magicFAST has been introduced as new GMV's real-time service able to achieve Fast Convergence and High Accuracy with low-cost user receivers
- The total cost of user hardware employed (Receiver and Antenna) is below 100€
- Conclusions of the experimentation campaign:
 - magicFAST is capable of providing 20cm of positioning accuracy after 5 minutes of PPP convergence
 - Level of accuracy maintained in open-sky and sub-urban environments
 - PPP robustness in challenging scenarios (high multipath and dense foliage) is increased by rapid re-convergence using *magicFAST* ionospheric corrections
- Continuous improvement is being carried out both on server and client sides

Thank you

ecarbonell@gmv.com

GNSS Business Unit www.gmv.com

