Galileo, an ace up in the sleeve for PPP techniques

September 15TH, 2016

Session D3: High Precision GNSS Positioning

I. Rodríguez-Pérez, L. Martínez-Fernández, G. Tobías-González,
J. D. Calle-Calle, M. Romay, M. D. Lainez, P. F. Navarro, GMV, Spain
Introduction

- Precise Point Positioning Technique (PPP)
- GNSS Constellations Evolution

Multi-GNSS PPP Analyses

Galileo-only PPP Study

Conclusions
Two HA Positioning solutions: PPP and RTK

PPP is an absolute positioning technique

Worldwide or Regional coverage

Relies on the use of precise orbits & clocks + observations + detailed models

Sparse network of reference stations for service provision

PPP Technique

Precise Point Positioning

Monitor Stations

Precise GNSS Orbits and Clocks Generation

Code & Phase Observations

PPP Algorithm

HA Solution
- **magicPPP** provides the necessary end-to-end services and tools for PPP processing including:
 - Multi-constellation products provision
 - End-user applications for mobile devices and workstations
 - Analysis Tools to evaluate the service performances
 - Compatible with DF and SF receivers
Galileo, an ace up in the sleeve for PPP techniques

GNSS Today

94 Satellites

- GPS 32 sats
- GLONASS 27 sats
- BeiDou 20 sats
- Galileo 14 sats
- QZSS 1 sats

GNSS Constellations Evolutions

GNSS Today

GPS
- 32 sats

GLONASS
- 27 sats

BeiDou
- 20 sats

Galileo
- 14 sats

QZSS
- 1 sat

94 Satellites

source: GSA

Initial Operation Capability
- Early services for OS, SAR, PRS and demonstrator for CS
- 2016

In-Orbit Validation
- 4 fully operational satellites and ground segment
- 2014

Galileo System Testbed v1
- Validation of critical algorithms
- 2013

Full Operation Capability
- 30 fully operational satellites and ground segment
- 2020

Full Operation Capability
- 22 fully operational satellites and ground segment
- 2017

Full Operation Capability
- 22 fully operational satellites and ground segment
- 2016

Full Operation Capability
- 12 fully operational satellites and ground segment
- 2015

Full Operation Capability
- 12 fully operational satellites and ground segment
- 2014

Full Operation Capability
- 4 fully operational satellites and ground segment
- 2013

United States
- 94 Satellites

UNCLASSIFIED INFORMATION
On-going GNSS Evolutions

GPS and GLONASS modernization
- IIF satellites transmitting L2C and L5 signal → +Robustness
- Better on-board clocks
- Future CDMA GLONASS

Galileo Deployment and Initial Services
- 4 New satellites deployed during 2016 and 4 more expected for next year
- High performance on-board clocks will help to improve the PVT solutions at user level
- Initial Services Declaration

IGS and Analysis Centers are also moving in the multi-constellation direction.
Objective

Demonstrate the benefits of using Galileo for Precise Point Positioning Techniques

- Two types of analysis have been performed:
 1) Multi-constellation PPP ⇒ Benefits of introducing Galileo
 2) Galileo-only PPP ⇒ Achievable performances
PORTADA DE UNA SECCIÓN

ESTO ES UN EJEMPLO DE MULTI-GNSS PPP ANALYSES
Multi-GNSS PPP Analyses

Static-user Scenarios

- **Stations**
 - Continental Europe → WTZZ
 - North America → UCAL
 - Latitude > 60º → HOFN
 - Latitude < -4º → SEYG

- **Configurations**
 - GPS only
 - GPS + GLONASS
 - GPS + GALILEO
 - GPS + GLONASS + GALILEO

Open sky scenarios

- WTZZ
- UCAL
- HOFN
- SEYG
Multi-GNSS PPP Analyses

Continental Europe - WTZZ (Germany)

Receiver: JAVAD TRE_G3TH DELTA

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>GR</th>
<th>GE</th>
<th>GRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (RMS, m)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>V (RMS, m)</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Improvement: 20-30%

Galileo, An ace up in the sleeve for PPP techniques

2016/09/15 Page 11
Multi-GNSS PPP Analyses

North America - UCAL (Canada)

Receiver: TRIMBLE NETR9

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>GR</th>
<th>GE</th>
<th>GRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (RMS, m)</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>V (RMS, m)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Improvement: 0-15%

Galileo, An ace up in the sleeve for PPP techniques

2016/09/15 Page 12
Multi-GNSS PPP Analyses

High Latitudes - HOFN (Iceland)

Receiver: LEICA GR25

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>GR</th>
<th>GE</th>
<th>GRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (RMS, m)</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>V (RMS, m)</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Improvement: 25-30%
Multi-GNSS PPP Analyses

Low Latitudes - SEYG (Seychelles Islands)

Receiver: TRIMBLE NETR9

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>GR</th>
<th>GE</th>
<th>GRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (RMS, m)</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>V (RMS, m)</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Improvement: 10-30%
Convergence Analysis

- Horizontal Convergence is analyzed with different constellation combinations (G-only, G+R, G+E, G+R+E)

Multi-GNSS PPP Analyses

GPS-only: ~2h
Multi-GNSS: ~30 min

GPS-only: ~2h
Multi-GNSS: ~15 min
Galileo, An ace up in the sleeve for PPP techniques

Static-user Scenario

- WTZZ station → Wetzel (Germany)
- Date: 06/09/2016
- 4-7 Galileo Satellites available

WTZZ Galileo-Only PPP

WTZZ GPS-Only PPP

H (RMS): 0.06 m
V (RMS): 0.08 m

H (RMS): 0.04 m
V (RMS): 0.05 m
Galileo, An ace up in the sleeve for PPP techniques

Static-user Scenario

- WTZZ station → Wetzel (Germany)
- Date: 06/09/2016
- 4-7 Galileo Satellites available

Galileo-only PPP Studies

WTZZ Galileo-Only PPP

WTZZ GPS-Only PPP

4-7 satellites

>10 satellites

H (RMS): 0.06 m
V (RMS): 0.08 m

H (RMS): 0.04 m
V (RMS): 0.05 m

Comparable Accuracy

4-7 satellites

>10 satellites

H (RMS): 0.06 m
V (RMS): 0.08 m

H (RMS): 0.04 m
V (RMS): 0.05 m

Comparable Accuracy
Galileo-only PPP Studies

Kinematic-User Scenario

- Open-sky scenario
- Urban scenario
Kinematic-User Scenario

- Used receiver: Trimble R10
 - Multi-GNSS receiver
 - Not able to track Galileo Eccentric satellites (E14 and E18)

- Both open-sky and urban conditions are considered
Galileo-only PPP Studies

Galileo-only PPP

- Results Galileo-only (E11, E12, E19, E24) vs GPS-Only

Galileo-only PPP Studies

PPP vs. RTK GPS Only

PPP vs. RTK Galileo Only

Open Sky

Urban

Epoch

North East

\[H \text{ (RMS)}: 0.05 \text{ m} \]
\[V \text{ (RMS)}: 0.10 \text{ m} \]

\[H \text{ (RMS)}: 0.64 \text{ m} \]
\[V \text{ (RMS)}: 1.45 \text{ m} \]

\[H \text{ (RMS)}: 0.67 \text{ m} \]
\[V \text{ (RMS)}: 0.99 \text{ m} \]

\[H \text{ (RMS)}: 1.89 \text{ m} \]
\[V \text{ (RMS)}: 4.01 \text{ m} \]
Galileo-only PPP

Results GPS+Galileo vs GPS-Only

PPP vs. RTK GPS Only

PPP vs. RTK GPS + Galileo

Open Sky

Urban

H (RMS): 0.05 m
V (RMS): 0.10 m

H (RMS): 0.64 m
V (RMS): 1.45 m

H (RMS): 0.04 m
V (RMS): 0.05 m

H (RMS): 0.06 m
V (RMS): 0.12 m

Galileo
An ace up in the sleeve for PPP techniques

2016/09/15 Page 22
Galileo-only PPP

- Results GPS+GLONASS vs GPS+Galileo

H (RMS): 0.04 m
V (RMS): 0.07 m

H (RMS): 0.08 m
V (RMS): 0.17 m
CONCLUSIONS

- Galileo is becoming a reality!!

- The introduction of Galileo satellites in the PPP solution significantly improves the performances:
 - Around 20% in open-sky scenarios
 - Dramatic in urban environments

- The performances of Galileo-only PPP solutions are comparable to GPS-only solutions in open-sky scenarios. It is expected to be the same for kinematic scenarios once more Galileo satellites are available.

- In late 2017, it is foreseen to have 22 Galileo satellites orbiting which will represent a major step-forward for PPP.
More about magicPPP

Tomorrow at 10:35:
D5b: Next Generation Sensors in Phones, Tablets and Wearables

Moving forward to the Future Low-Cost PPP Paradigm

Demos at booth 508!!!