ION GNSS 2015 Advanced GNSS Algorithms and Services Based on Highly-stable Onboard Clocks

SEPTEMBER 16TH, 2015 - ION GNSS 2015, TAMPA, FLORIDA, USA SESSION E2b: Advanced Technologies in High Precision GNSS Positioning 2

C. García M. D. Laínez **P. Navarro** I. Rodríguez G. Tobías

© GMV, 2015 Property of GMV All rights reserved

OUTLINE

Introduction and objective

Satellite clocks modelling

Preliminary Results

Conclusions

INTRODUCTION AND OBJECTIVE

ORBIT AND CLOCK ESTIMATION

CONVENTIONAL OD&TS PROCESS

Snapshot estimation \rightarrow huge amount of information

Relatively large tracking station networks are needed

IGS Analysis Centre	Reference Network size		
CODE	240		
NRCan	80		
ESOC	150		
GFZ	200		
JPL	80		
MIT	300		
NGS	200		
SIO	290		
Service Provider	Reference Network size		
FUGRO	>100		
TRIMBLE	100		
VERIPOS	74		

SATELLITE CLOCKS

Atomic clocks on board satellites are highly stable

SATELLITE CLOCKS

Satellite clock stability keeps improving

Rb

PHM

© GMV, 2015

OBJECTIVE

SATELLITE CLOCKS MODELLING

SATELLITE CLOCKS

CLOCK MODELS IN ODTS

CLOCK MODELS IN magicODTS

magicOTDS enhanced with clock model est.

ION GNSS 2015

PRELIMINARY RESULTS

COVARIANCE ANALYSIS

CLOCK MODELLING RESULTS

- magicODTS enhancement: each clock can be estimated as snapshot or clock model
- Clock model made of two parts $b(t) = b_G(t) + b_S(t)$
 - -A quadratic function, $b_G(t) = a_0 + a_1 t + a_2 t^2$
 - -A constrained snapshot correction, $b_S(t)$
- ODTS with clock model proved feasible, performance improvements for small networks

CLOCK MODELLING RESULTS

6 stations tracking network

12 stations tracking network

Orbit and Clock determination error wrt IGS

Processing type	CLK (ns)		ORB (cm)	
	6	12	6	12
Snapshot	0.51	0.26	21.3	6.6
Model	0.43	0.26	16.5	5.6

© GMV, 2015

Page 16

CONCLUSIONS

CONCLUSIONS

- Current GNSS clocks stability clears the path for potential performance improvements based on a tight modelling
- This would make possible to reduce tracking networks size
- Physical clock modelling in ODTS processing have shown positive results in reduced networks
- Systematic effects (e.g. thermal environment) need to be properly understood and modelled

Thank you

Pedro Francisco Navarro GMV - GNSS BU pfnavarro@gmv.com

> Visit us at booths 118/120

