ION GNSS 2015 NEW APPROACH FOR INTEGRITY BOUNDS COMPUTATION APPLIED TO ADVANCED PRECISE POSITIONING APPLICATIONS

SEPTEMBER 16TH , 2015 - ION GNSS 2015, TAMPA, FLORIDA, USA SESSION E2b: Advanced Technologies in High Precision GNSS Positioning 2

P. Navarro

M. Laínez

M. Romay

© GMV, 2015 Property of GMV All rights reserved

CONTENTS

PPP Introduction

PPP Integrity Bound

Experimental Results

Conclusions

PPP INTRODUCTION

PPP INTRODUCTION

Highly precise satellite ephemeris and clock models
Detailed physical and correction models
Use of very accurate carrier-phase measurements

PPP ARCHITECTURE

Precise Orbit & Clocks Determination

ION GNSS 2015

Sept 16, 2015 Page 5 © GMV, 2015

magicGNSS RT PPP

Multi-GNSS (GPS, GLO, GAL, BEI, QZSS) Dual/single-frequency PPP Gap bridging

022_GR_LAGR_V5_5

ION GNSS 2015

Sept 16, 2015 Page 6 © GM

PPP INTEGRITY BOUND

INTEGRITY BOUND (PROTECTION LEVEL)

 $P(Error > PL) \le IR = 1 - CL$

PREVIOUS WORK

Experimental PPP Bounding Algorithm

PPP Reliability Indicators

- Residuals

. . .

- Quality of Products
- Convergence time

Isotropy Based PL

- LSQ solutions
- Highly reliable in all kinds of environments

INTEGRITY BOUND (PROTECTION LEVEL)

Real distribution not known wodel

Dependent on the conditions

INTEGRITY FOR KALMAN SOLUTIONS

EXPERIMENTAL RESULTS

STATIC SCENARIOS (5 DAYS)

Horizontal, 99.9%

Horizontal, 99.99999%

STATIC SCENARIOS: CONVERGENCE

Horizontal, 99.9%
GPS+GLONASS
GPS-only
GLONASS-only

Sept 16, 2015 Page 14 © GMV, 2015

KINEMATIC SCENARIO 1

H_Error • H_PL -----

Tres Cantos (2h)

N40-335 Sv&m* N40-37-30 N40-3554 N40-3554 W 3 43-48 W 5 42:36 W 3 43-48 W 5 42:36 W 3 41-24 Cer ro de recu Reference Position Stricese reception

Horizontal, 99%

KINEMATIC SCENARIO 2

V_Error • V_PL -----

Vertical, 99%

CONCLUSIONS

CONCLUSIONS

- Statistically sound method developed for an integrity bound for positioning based on Kalman filter
- In particular, applied to PPP solution
- Integrity bounds of a few decimeters, with integrity performances within target, for different confidence levels
- Very good results in different conditions / environments

Thank you

Pedro F. Navarro Madrid GMV - GNSS BU Email: pfnavarro@gmv.es

Visit us at booths 118/120

