ION GNSS 2014 MAGICGNSS' REAL-TIME POD AND PPP MULTI-GNSS SERVICE

SEPTEMBER 12TH, 2014 - ION GNSS 2014, TAMPA, FLORIDA, USA SESSION B6: PRECISE POINT POSITIONING AND L-BAND SERVICES

D. Calle P. Navarro I. Rodríguez D. Rodríguez **G. Tobías**

© GMV, 2014 Property of GMV All rights reserved

OUTLINE

- Motivation for magicGNSS development
- magicGNSS overview
- Web Service Infrastructure
- Real Time Server Infrastructure
- Real Time PPP Client
- magicGNSS' performances
- Conclusions and future work

MOTIVATION

- magicGNSS web service
 - R+D project started back in 2007
 - Provide the GNSS community with a set of useful GNSS tools
 - Effort to develop GMV's POD and PPP SW to keep our algorithmic knowledge at state-of-the-art level
- magicGNSS real-time service
 - Answer to IGS' call on 2008 for IGS Real-Time Pilot Project
 - Precise orbit and clock products generation in real-time
 - Evaluate real-time PPP performances in the field
 - Learn and overcome the challenges associated to the end-to-end PPP process
 - Communications
 - Robustness
 - Reliability
 - Challenges of implementing the PPP algorithm in portable devices

- CPU and memory load
- Power consumption

MAGICGNSS OVERVIEW

- magicGNSS is built up from 3 high level elements:
 - Offline web service
 - Real-Time product server
 - Real-Time PPP client
- All three elements share the same low level algorithmic libraries which guarantees results consistency and SW maintainability

MAGICGNSS' WEB SERVICE

- Online platform (magicgnss.gmv.com) which enables a registered user to run a set of different multi-GNSS tools
- PPP computed using as reference IGS products or GMV's products generated by means of an IGS network
- PPP can be run by mail sending mail to magicpp@gmv.com
- Processes RINEX 3.02 files
- ODTS processing based on IGS stations or previously uploaded user stations
- 6.0 beta version allows GPS+GLONASS+Galileo processing

MAGICGNSS' WEB SERVICE (2)

- Submitted RINEX validation used to be performed by means of TEQC (http://facility.unavco.org/software/teqc/teqc.html). Powerful and well-tested but some limitations:
 - It performs a very strict format validation that leads to reject many usable RINEX by PPP/ODTS
 - It does not support new RINEX versions (3.xx)
- GRIAL (Gmv RInex AnaLyzer). Designed and developed to achieve three important goals:
 - Adapt the RINEX v2.xx analysis to the *magicGNSS* requirements
 - Support RINEX v3.xx formats
 - Take advantage of the knowledge acquired with the maintenance and support tasks of *magicGNSS* to try to fix the most common problems found in the different RINEX versions
- PPP by mail rejection greatly improved by the usage of GRIAL

MAGICGNSS' REAL-TIME SERVER

- Infrastructure for generation of:
 - Precise multi-GNSS orbits and clocks for real-time and postprocessing applications
 - RTCM ephemeris corrections for HA positioning in real-time
- Modular architecture for distributed processing
- Data retrieval, from a worldwide RTCM station network via NTRIP
- Configurable in real-time by means of a database
- Accepts connections from multiple PPP clients

MAGICGNSS' REAL-TIME PPP CLIENT

- PPP module able to compute HA user position in real-time based on:
 - RTCM observations and ephemeris coming from a GNSS receiver via serial port
 - RTCM ephemeris corrections coming from an external service provider
- User logs and runs the PPPP client by means of an MMI

Position generated in NMEA format

DATA SOURCES

Allows running RTK by means of rtklib

RTCM STATUS

- The latest RTCM 3.2 standard developed by the SC.104 intends to support highly accurate differential and kinematic positioning as well as a wide range of navigation applications as PPP
- For POD and PPP applications 3 family messages are crucial:
 - Observations
 - Ephemeris
 - Ephemeris correction messages
- Multi-GNSS coverage has been improved, but certain gaps persist:

	GPS	GLONASS	Galileo	BeiDou	QZSS
Observations (MSM)	YES	YES	YES	YES	YES
Ephemeris	YES	YES	YES	NO	YES
Ephemeris corrections	YES	YES	NO	NO	NO

MAGICGNSS' REAL TIME DATA SOURCES

NTRIP casters (http://ntrip.org/)

rt.igs.org:2101

www.igs-ip.net:2101

IGS network GPS + GLONASS only

MGEX network for multi-GNSS

IGS' MULTI-GNSS EXPERIMENT PROJECT

Established to explore and promote the usage of new navigation signals and constellations within the IGS

(http://www.igs.org/mgex)

- Multi-GNSS sensor station network
 - Around 110 stations located in 90 sites
 - RTCM3-MSM real-time data streams (5 streams per registered user)
 - RINEX 3.02 data archive
- Multi-GNSS products from 5 AC`s
 - European Space Operations Centre (ESOC)
 - Center for Orbit Determination in Europe (CODE)
 - GeoForschungsZentrum Potsdam (GFZ)
 - Technische Universität München (TUM)
 - Wuhan University

Real-time M-GEX RTCM-3 MSM Stream Generation

IGS Workshop, 22-27 July 2012, Olsztyn, Poland

MAGICGNSS' WEB SERVICE PERFORMANCES

- Offline ODTS process running in off-line postprocessing mode with a latency of 2 days and specific setup, which allows the generation of GMV's reference products
- Typical GPS typical performances are around:
 - 3,5 cm RMS for the orbit
 - 0.2 ns RMS for the clock accuracy

MAGICGNSS' WEB SERVICE PERFORMANCES (2)

- Experimental magicGNSS' web server with MGEX stations for reference product generation
- MGEX' products used as reference for GALILEO product quality assessment
- Centimetric consistency between all the solutions

MAGICGNSS' REAL TIME SERVER PERFORMANCES

- Quality of the Real-Time GPS and GLONASS orbits and clocks has been assessed during the past years versus IGS in the frame of IGS' Real Time Service (rt.igs.org)
- Typical GPS orbit accuracy is about 6 cm, RMS, and clock accuracy is about 0.25 ns, RMS versus IGS rapid products
- Typical GLONASS orbit accuracy is about 10 cm, RMS, and clock accuracy is about 0.4 ns, RMS versus ESOC (European Space Operations Centre) products.

Page 14 🛛 🗍 © GMV, 2014

MAGICGNSS' REAL-TIME PPP CLIENT PERFORMANCES

- Base station coordinates continuously monitored
- Real-Time PPP performances assessed versus RTK in open field kinematic environments

 Centimetric consistency between RTK and PPP under nominal circumstances

ION GNSS 2014

© GMV, 2014

CONCLUSIONS AND FUTURE WORK

- A increasing number of users is using magicGNSS. A chance for improving, but workload increase
- Upgrade magicGNSS online version for multi-GNSS processing
- Challenges both at server and client level
 - Products quaity
 - Communications
 - Convergence
 - Robustness
- MSM data availability and multi-GNSS SSR message definition issues need to be tackled for real-time multi-GNSS service testing

Thank you

Guillermo Tobías GMV - GNSS BU gtobias@gmv.com

