EFTF 2012

Smartphone application for the near-real time synchronization and monitoring of clocks through a network of GNSS receivers

APRIL 26th, 2012 – GÖTEBORG, SWEDEN

SESSION C3L-B: GNSS AND APPLICATIONS

D. Calle (GMV) G. Cerretto (INRiM) **R. Píriz** (GMV) C. Plantard (INRiM)

OUTLINE

- Objectives
- Overview of ODTS
- Advantages of ODTS vs PPP
- The magicGNSS web-based system
- The Timing account
- The Timing web and smartphone app
- Conclusions

April 26, 2012

OBJECTIVES

- To synchronize and monitor clocks collocated at different Timing laboratories and connected to a geodetic GNSS receiver+antenna ("station")
- To do it in near-real time, based on hourly RINEX measurement files coming from the participating labs exclusively (via ftp)
- Using a network solution: the ODTS algorithm (Orbit Determination & Time Synchronization); this is not PPP: no precise satellite orbit+clocks products are required, just the GPS station measurements
- To automate the process and show the results in near-real time via web and smartphone, in a friendly and robust way
- Participating labs and stations:

NAZIONALE DI RICERCA

INRiM

April 26, 2012

WHAT IS ODTS (1)

- ODTS stands for Orbit Determination & Time Synchronization
- ODTS is a batch least-squared estimator processing dual-frequency pseudorange and carrier phase measurements from a GNSS station network, and minimizing measurement residuals; GPS and GLONASS supported
- Measurements are processed in batches (*arcs*) of typically 2-day to 5-day duration; execution time less than one minute for 8 stations and 2 days (on GMV server)
- Main outputs are satellite orbits+clocks and station clocks
- Other estimated parameters: tropo delay, satellite radiation coefficients, phase ambiguities (floating), station coordinates (optional)
- IGS Conventions followed, Earth Rotation parameters coming from IERS
- Clocks offsets are unmodeled, they are estimated as instantaneous and independent values (*snapshot*) at the measurement timestamp, typically at a rate of **5 min** or **30 sec**
- One station in the network must be chosen as reference clock: all resulting clock offsets are given with respect to this reference clock
- Station biases are uncalibrated: the resulting clocks are *apparent clocks* containing the station internal delays and their instabilities

Iteration Number	RMS of Weighted Residuals	Delta RMS of Weighted Residuals	RMS of Code Residuals m	RMS of Phase Residuals m
0	10188.475	-	87.115	86.696
1	1.685	10186.790	0.227	0.013
2	0.837	0.848	0.219	0.005
3	0.814	0.023	0.217	0.005
4	0.806	0.008	0.216	0.004
5	0.802	0.004	0.216	0.004

NAZIONALE DI RICERCA

METROLOGICA

INRiM

Smartphone application for the near-real time synchronization and monitoring of clocks through a network of GNSS receivers

April 26, 2012

WHAT IS ODTS (2)

- Normally a global network of stations is needed but *regional* ODTS is also possible, using a sparse network
- Globally, satellite orbit+clock are "bad" due to lack of coverage
- But satellite orbit+clock errors largely cancel out over the area of interest → station clocks are precise!
- Exception are "isolated" stations, with apparent clock slightly noisier (e.g., USN3); can be improved adding IGS data

from PPP (IGS rapid products)

from ODTS

Smartphone application for the near-real time synchronization and monitoring of clocks through a network of GNSS receivers

April 26, 2012

ADVANTAGES OF ODTS VS PPP

- No dependence on timeliness and quality of orb+clk *products* \rightarrow more robust and operational
- Only station measurements needed (RINEX files); easy to use, web-based, no installation
- A moderately dense network required, regional ODTS also possible
- Latency can be improved using 15-min RINEX files; fast execution time (1 min)
- No added clock noise due to sat clock interpolation: 30-sec rate is possible (even higher)

PPP @ 30 sec (IGS rapid products) = interpolation

Page 6

April 26, 2012

magicGNSS (1)

 magicGNSS is a web application for GNSS data processing

magicgnss.gmv.com

- One-month trial account can be requested online for free
- The user can upload RINEX measurement files (daily, hourly, 15-min), via web and ftp; ftp upload can be automated on the station side
- ODTS and PPP algorithms available (both supporting GPS and GLONASS); 5-min and 30-sec data rates supported in PPP and ODTS
- For ODTS, data from IGS stations internally available to "fill the gaps" (core stations)
- For PPP, IGS *final*, *rapid* or *ultra-rapid* products (sat orbit+clock) can be used, as available (GPS only)
- GMV internal *rapid* and *ultra-rapid* products for PPP are also available (GPS+GLONASS)
- A Scheduler is provided to automate ODTS/PPP executions (as often as every hour)
- GPS & GLONASS NANUs are automatically processed and unhealthy satellites discarded
- Very easy to use, full PDF reports provided (ODTS and PPP)

JA7IONAL

INRiM

April 26, 2012

magicGNSS (2)

Smartphone application for the near-real time synchronization and monitoring of clocks through a network of GNSS receivers

April 26, 2012

THE TIMING ACCOUNT (1)

- A special magicGNSS *time* account provides additional support for clock evaluation via web and smartphone
- Results are based on ODTS executions every hour using the Scheduler (ODTS runs 20 min after the hour, to accommodate for RINEX file arrival)
- The different timing labs automatically upload via ftp hourly RINEX files to a shared magicGNSS account (password protected); results are monitored by INRiM and GMV
- This is a collaborative job and timely upload of RINEX files is fundamental
- Clock monitoring results are available at magicgnss.gmv.com/time
- Only clock results are shown,
 ODTS complexity is hidden
- The user can concentrate on clock behavior and react quickly to possible anomalies

Scheduler		
Scheduling:	⊙ On⊖ Off	
Algorithm:		
Template Scenario:	Template 9 stations 💠	
Scheduling Frequency:	1 hour	'S
Scheduling Delay:	20 	utes after the hour
Start Scheduling on:	12 110 at 15 + hours UTC	
Stop Scheduling after:	Never 🗘 days	
Notify Me by Email:	3	
Delete Old Scenarios:	♂	
	Save Cancel	

April 26, 2012

THE TIMING WEB & APP (1)

×

magicGNSS TIME magicGNSS

→ C 🔺 🕓 magicgnss.gmv.com/time/

 $\Theta \Theta \Theta$

*time*ptti@magicgnss

Three pages: "Summary", "Clock Monitoring", "Download" "Summary" page shows the latest execution (20 min after integer hour)

Smartphone application for the near-real time synchronization and monitoring of clocks through a network of GNSS receivers

April 26, 2012

THE TIMING WEB & APP (2)

"Clock Monitoring" page allows plotting multiple days of the clock evolution
 Reference clock can be changed dynamically without having to re-run ODTS

Smartphone application for the near-real time synchronization and monitoring of clocks through a network of GNSS receivers

April 26, 2012

THE TIMING WEB & APP (3)

CONCLUSIONS

- ODTS can be used to monitor GNSS station clocks in near-real time
- Only RINEX measurement files from station needed (hourly), and an ftp client
- No dense worldwide station network required, ODTS works regionally
- ODTS does not depend on timeliness/quality of satellite orb+clk input products
- Small latency, high robustness
- Web-based with magicGNSS, no need to install+learn software
- Very easy to use, no prior knowledge required
- Just upload your RINEX files and watch the results on the web or your phone
- Output clock quality similar to PPP and IGS results
- Almost one year running smoothly on GMV server
- So far just one weekend downtime due to scheduled maintenance

Page 13

April 26, 2012

Thank you

Ricardo Píriz rpiriz@gmv.com

