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ABSTRACT

After the launch of three new GLONASS satellites on
March 1, 2010, the Russian constellation consists now of
more than 20 operational satellites. A total of three triple-
spacecraft launches are planned to take place this year.

The ‘GNSS constellation’, including GPS and

GLONASS, provides currently more than 50 usable
satellites. For the GNSS user this means that up to 18
GPS+GLONASS satellites can be simultaneously visible
in open-sky areas. This represents an increase of around
60% in satellite availability with respect to the GPS-only
scenario.

Most integrity provision techniques, either autonomous or
assisted (e.g., by SBAS or GBAS) have been conceived
for the civil aviation framework. Due to the harsh
conditions found in urban environments, such as heavy

multipath, and very especially non-line-of-sight (NLOS)
multipath, some of the assumptions made for civil
aviation integrity do not hold. Isotropy-Based Protection
Level (IBPL) is an autonomous integrity algorithm
specifically developed by GMV to face the challenges
associated to urban environments. Nonetheless, IBPL
turns out to be a flexible integrity provision technique that
performs well in all environments, and hence is suitable
for a wide variety of applications including civil aviation.
IBPL performance in terms of typical Protection Level
size depends strongly on the number of satellites
available, and hence the new GPS+GLONASS scenario
implies a dramatic improvement with respect to the usual
GPS-only solution.

In order to validate the IBPL concept it is necessary to
know the true receiver antenna position. By frue position
we mean coordinates that are known to have an error
several orders of magnitude smaller than the standard
pseudorange-based position used in IBPL.

Precise Point Positioning (PPP) is a relatively new
positioning technique providing centimeter-level error.
PPP  processes pseudorange and  carrier-phase
measurements from a single user receiver, using detailed
physical models and corrections, and precise GNSS orbit
and clock products calculated beforehand (for example
products from IGS, the International GNSS Service) [1].
PPP is different from other precise-positioning
approaches like RTK in that no reference stations are
needed in the vicinity of the user receiver. The only
observation data that must be processed are measurements
from the user receiver.

Another advantage of PPP is that since the GNSS orbit
and clock products are by nature global, the PPP solutions
are also global, i.e., the PPP approach works for a receiver
located anywhere on or above the Earth surface, and the
resulting position is referred to a well-known terrestrial
reference frame (normally ITRF). PPP can be applied at
post-processing level and also in real-time applications,
provided that real-time input orbits and clocks are
available.



This paper describes the implementation of GPS and
GLONASS data processing in the IBPL and PPP modules
of the magicGNSS web application developed by GMV,
including algorithm description and performance analysis,
and presents the major results in terms of autonomous
integrity statistics using combined GPS+GLONASS real
data.

IBPL FUNDAMENTALS

For standard, low-accuracy, stand-alone positioning, the
benefits of an extended GNSS constellation is especially
important in urban areas where buildings blocking the
GNSS signals might reduce the number of visible
satellites below the minimum required for a reliable
solution. The advantages of multi-constellation GNSS
have also been demonstrated in precise positioning
applications (Real Time Kinematics and Precise Point
Positioning), resulting in higher accuracy and faster
convergence. However not so much research has been
done in the field of autonomous integrity using real
GPS+GLONASS data, mainly because it is only recently
that the larger satellite availability has enabled a clear
improvement in this area.

The Isotropy-Based Protection Level is a GNSS receiver
autonomous integrity monitoring (RAIM) method. It does
not implement measurement rejection/exclusion (FDE)
mechanisms. Instead it computes a protection level based
on the snapshot all-in-view pseudorange-based least
squares solution. The protection level is a number that
bounds the state estimation error up to a certain
probability (or confidence level) 1 — a. In other words,
the probability that the position error exceeds the
protection level is a (known also as the integrity risk).

The idea is to use the vector of least squares estimation
residuals (or residual vector) as a characterization of the
position error. The larger the residual vector, the larger
the state estimation error vector, and the relation between
both is taken to be linear, so the protection level depends
linearly on the size of the residual vector. Of course, the
state estimation error depends also on the dilution of
precision, so if we are interested, for instance, in a
horizontal protection level, we would compute it as

HPL =k - ||r|| - HDOP

where 1 is the least squares residual vector and k is the
scaling factor that relates the sizes of the residual vector
and the state estimation error vector. This constant, which
depends on the target integrity risk «, is called the
isotropy confidence ratio and is defined so as to ensure
that the state estimation error & (or, more precisely, its
image through the least squares design matrix G) is
bounded by the size of the residual vector times k with
the required probability 1 — a:

PUIG-8ll<k-lIriD=21-«a Eq. 1

For computing k from the preceding relation, it is
assumed that the measurement error vector has an
isotropic distribution in the measurement space (and
hence the name for the constant k and for the method
itself), that is, it can point in any direction of the
measurement space with the same probability. Note that
this does not imply any particular distribution of the
individual measurement errors (e.g. Gaussian), nor that
they are unbiased or have known variance. Individual
errors can be arbitrarily large or biased as long as they
define an error vector that has the same a priori
probability of pointing in any direction of the
measurement space. This a priori probability must be
understood as the relative frequency of the error vector
pointing in each possible direction when the system is left
running for an infinite time.

Kernel(G%)
[Dim = N-4]
I1
W S
,
N
\\\\
M Range(G)
[Dim = 4]
I1

P(8) = 1-a

Measurement space
[Cim = M)

Figure 1: The IBPL concept

Isotropy implies that the pointing direction of the error
vector defines a uniform distribution in the centered
sphere of the N-dimensional measurement space (see
Figure 1). On the other hand, the condition

G- 8l <k-llrll Eq.2
establishes a maximum value (k) for the ratio

G - &li
(Ll

The vectors G-8 and r constitute an orthogonal
decomposition of the measurement error vector € in the
measurement space, G - § being in the range of the matrix
G and r being in the null space (that is, the kernel) of G¢,
so the preceding ratio describes the slope of £ with respect
to the range of G (see Figure 1). The ratio is actually the
inverse of the slope.



Hence, for each fixed value of k, Eq. 2 defines a region of
the sphere (called A in Figure 1), which is the region of
possible pointing directions of & for which Eq. 2 is
satisfied. If we take k so that the area of A is a fraction
1 — a of the total area of the sphere, then Eq. 1 will also
be satisfied (provided that the isotropy assumption holds).
Equivalently, the projection of A into the range of G
defines another region B which contains the vector G - §
with the required probability 1 — «a.

Now we observe that Eq. 2 is equivalent to:
8 G686 < (k-|rl)? Eq.3

Therefore, choosing k so that Eq. 1 holds, which means
that Eq. 2 holds with probability 1 — a, we have that also
Eq. 3 holds with probability 1 — a. But Eq. 3 defines a
solid ellipsoid in the position-clock domain, and Eq. 1
says that the state estimation error § is contained in this
ellipsoid with probability 1 — «, so if d is the ellipsoid’s
semi-major axis, then

6]l < d

holds also with probability 1 — a or higher (by taking the
semi-major axis we are being conservative). Furthermore,
if we are interested in the horizontal component of the
position error we can project the ellipsoid to the
horizontal plane, obtaining a solid ellipse which contains
the horizontal component of the position error, &y, with
the same or even higher probability. If dy is the semi-
major axis of the ellipse, then we also have

16ull < dy

with probability 1 — a or higher. It can be shown that d
is always smaller than k - ||r|| - HDOP, and hence:

P(|64l <k-|lrll-HDOP) 21—«
Therefore we take the horizontal protection level to be
k-||r||- HDOP (as we stated in our original equation, at

the beginning of this section) which guarantees the target
integrity risk as long as the isotropy assumption holds.

ADDITIONAL REMARKS ABOUT IBPL

Once the basic idea behind the IBPL concept has been
described, it is worth making some further observations:

e A vertical protection level with the same
integrity risk can be analogously obtained (using

the same value of k) as:

VPL =k - |[r|| - VDOP

A slight improvement (that is, a smaller
protection level but still covering with
probability 1 — a or higher) can be obtained in
the horizontal case if instead of HDOP we take
the semi-major axis of the ellipse obtained as the
horizontal projection of the ellipsoid defined by:

§-G'G-6<1

In the case of dual constellation positioning, to
which this paper is devoted, the dimension of the
state space is not 4 but 5, since an additional
clock parameter accounting for the inter-system
bias needs to be estimated (unless provided by an
external source). This yields slightly different
values of k than the 4-state case, but the method
works the same.

The value of k does not depend only on the
target integrity risk «, but also on the number of
measurements N, which defines the dimension of
the measurement space and hence of the sphere
used to compute k. Actually, as noticed in the
previous bullet, k also depends on the number M
of parameters being estimated (5 in this paper):

k = k(a, M, N)

In a typical positioning application where a and
M are fixed, k can be pre-computed and
tabulated for different values of N, so that
calculating protection levels is just a matter of
looking up in a table and adding two extra
multiplications to the least squares estimation
routine. More generally, k can be pre-computed
and tabulated also for different values of M, and
even of a.

The isotropy concept, in order to be well defined,
requires that a particular reference frame of the
measurement space is chosen. The correct choice
so that our construction works correctly would
be an orthonormal reference frame all whose
basic vectors are either contained in the range of
G or in its orthogonal complement. This implies
that, even when there is a biased satellite (or
several of them), the isotropy assumption is not
necessarily violated, since the direction of the
bias in the measurement space depends on the
particular satellite geometry and hence is still
widely variable in time.

Biases that are common to all satellites (e.g.
tropospheric delay to some extent) are a clear
source of anisotropy, but this still does not
invalidate the method; it can be shown that, as



the common part of the bias is absorbed by the
receiver clock estimate, there is no impact at all
on position integrity.

More information about IBPL can be found in [2], [3],
[4].
PRECISE POINT POSITIONING

In order to validate the IBPL concept it is necessary to
know the true receiver antenna position. By frue position
we mean coordinates that are known to have an error
several orders of magnitude smaller than the standard
pseudorange-based position used in IBPL.

High-accuracy positioning at the cm-level can only be
achieved combining pseudorange and carrier-phase
measurements. Two main techniques are in used
nowadays, the well-established RTK (Real Time
Kinematics) and the relatively new PPP (Precise Point
Positioning).

PPP processes measurements from a single user receiver,
using detailed physical models and corrections, and
precise GNSS orbit and clock products. PPP differs from
other precise-positioning approaches like RTK in that no
reference or base stations are needed in the vicinity of the
user. Another advantage is that since the GNSS orbit and
clock products are by nature global, the PPP solutions are
also global. One disadvantage of PPP, though, is its slow
convergence time, in comparison to nearly instantaneous
convergence in dual-frequency short-baseline RTK.

The PPP algorithm uses as input pseudorange and carrier
phase observations from a dual-frequency receiver, and
precise satellite orbits and clocks, in order to calculate
precise receiver coordinates and clock. The orbit and
clock input products are calculated beforehand by a
dedicated software package. The dual-frequency
observables are used un-differenced, and combined into
the so-called ionosphere-free combination. The highlights
of the algorithm are described next.

The observations coming from all the satellites are
processed together in a process that solves for the
different unknowns, namely the receiver coordinates, the
receiver clock, the zenith tropospheric delay and the
phase ambiguities.

Most implementations of PPP algorithms use a sequential
filter in which the process noise for the coordinates is
adjusted depending on the receiver dynamics (static or
kinematic), the time evolution of the clock is more or less
unconstrained (white noise with a high sigma), and the
process noise for the tropospheric delay is adjusted to
standard tropospheric activity. In the case of phase
ambiguities, they are considered as a constant per pass.

Our PPP implementation features a batch algorithm
instead, and therefore no process noise has to be modeled.
In this case, the receiver clock offset is estimated at every
measurement epoch, the coordinates are adjusted for the
whole observation interval (in static mode) or per epoch
(in kinematic mode), the troposphere is estimated at
regular fixed intervals and the ambiguities are also
estimated per pass.

The slant tropospheric delay is expressed as a function of
the zenith tropospheric delay (which is the parameter that
is actually estimated in PPP) through the use of a mapping
function.

The precise modeling of Earth dynamics (causing
variations of the static receiver coordinates with respect to
the terrestrial reference frame) is based on the IERS
(International Earth Rotation and Reference Systems
Service) recommendations. Such models include solid
Earth tides, ocean loading and Earth Rotation. The
modeling of the observables includes for instance the
offset between the antenna phase center and the satellite
center of mass, and the so-called phase wind-up at the
receiver.

The accuracy of the satellite clocks and orbits is one of
the most important factors affecting the quality of the
PPP. Normally, the IGS products [1] (ultra-rapid, rapid, or
final) are used due to their high accuracy, however the
IGS does not currently provide GLONASS clocks.
Furthermore, IGS products have a latency of several
hours, which makes them not valid for real-time PPP.

Another relevant factor that affects the PPP performances
is the amount (number of satellites in view at each epoch)
and quality (noise, multipath) of the observations. For
instance, more satellites in view improve the observability
of the zenith tropospheric delay. Therefore, a possible
way to increase the reliability of this technique is to
process GPS and GLONASS observations together.

Given that PPP is not a differential technique, it cannot
resolve carrier phase ambiguities and they need to be
estimated with the aid of the code measurements. This
fact makes the convergence period longer than in other
techniques (RTK, for instance), thus requiring longer
observation times for static positioning.

REFERENCE PRODUCTS FOR PPP

As mentioned above, the positioning performances of the
PPP technique are directly related to the accuracy of the
reference GNSS orbit and clock products. Therefore, the
generation of precise satellite orbits and clocks in real time
becomes a major challenge for enabling a real time
positioning service.



GMYV has developed an infrastructure for the generation of
precise GPS and GLONASS orbits and clocks with very
low latency in a first step, and in real time in a second step.
The products generated this way are contributed to the IGS
Real Time Pilot Project, and are also used to feed GMV’s
PPP service, part of the web application magicGNSS [5],

[6].

The product generation is based on an Orbit
Determination and Time Synchronisation (ODTS)
process, which runs typically every 15 minutes. This
process receives as input dual-frequency code and phase
measurements collected in real time from a worldwide
network of IGS stations, using the NTRIP protocol. Then,
they are pre-processed also in real time by a Pre-
Processing and Validation module (PPV) and made
available to the different algorithms. The high-level
layout of the infrastructure is shown in Figure 2.
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Figure 2: Product Generation Infrastructure Layout

The network, which is represented in Figure 3, provides
global coverage and some redundancy to cover the
relatively frequent (especially from some stations)
outages of the real-time data streams. The color in the
figure represents the number of stations that are tracking a
satellite when it is flying over a certain point. The red
circles show the station positions.
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Figure 3: Tracking Station Network

The ODTS processes 2-days of data in every run, and
provides updated satellite orbits and other estimated
parameters (such as phase ambiguities, station tropospheric
zenith delays and Earth orientation parameters).

In parallel to the ODTS, another process estimates the
clocks in real time taking as input the observations and the
outputs from the last ODTS execution. There is a small
latency in the delivery of the clock estimation, which is
associated to the time that the algorithm waits for the
arrival of the measurements from the station through the
Internet; typically one or two seconds.

The GPS and GLONASS satellites are processed together,
in order to ensure a consistent solution. It is necessary to
estimate an inter-channel bias when processing
GLONASS data. This must be done in order to
compensate for the different internal delays in the
pseudorange measurements through the GLONASS
receiver, associated to the different frequencies used by
the different satellites. Otherwise the station clock
estimation would not be coherent with the pseudoranges.
It has been observed that in GPS data this effect is much
smaller and therefore negligible, normally it is not
necessary to estimate such an inter-channel bias for GPS
data.

The real-time orbits and clocks are available as a data
stream to real-time processing algorithms (such as real-time
PPP), and stored in standard formats (SP3, clock RINEX)
for offline use.

The quality of the products is monitored by performing
comparisons of the overlapping solutions, and by
calculating at regular intervals a PPP solution of five
control stations of known coordinates. When the quality of
the most recent solution is considered insufficient, a
prediction from the previous one is used instead, until a
new valid solution is available. In addition, the products are
also compared to the IGS solutions when they are
available. The comparison of real-time solutions with the
IGS Rapid products is shown in Figure 4.



The typical value for orbits (3D RMS for all satellites, read
on the left y-scale) is around 6¢cm, and for clocks (read on
the right y-scale) it is around 0.3 ns.
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Figure 4: Performances of Real Time GPS Products

As is also represented in Figure 2, there is also another
ODTS process running in off-line post-processing mode
with a latency of 2 days and specific setup, which allows
the generation of more precise products. When available,
such products are then used for off-line PPP in
replacement of the ones generated previously in real time.
The comparison of the off-line products with the IGS for
a typical day is show in Figure 5. In this case the typical
orbit performances are better than 3cm, and clock
accuracy is around 0.1ns.
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Figure S: Example performances of off-line GPS
Products

The performances of the GLONASS products are shown in
Figure 6. Orbit performances (again, 3D RMS for all
satellites) are given in terms of overlaps (available after
each ODTS) and comparisons with IGS orbits (available
with 2-week delay for GLONASS), and read in the left y-
scale. The typical value is below 5 cm. Clock performances
are given in terms of overlaps only, since the IGS does not
currently publish GLONASS clocks. The typical value
ranges between 0.1 and 1 ns, and varies notably from day
to day. The reason is the estimation of the inter-channel
biases, which are correlated with the clocks and therefore
make the estimations less stable. However, there is no
impact on positioning performances as every solution is
always consistent.

0.3 i
A A + OrbitOverlaps
* Orbitvs IGS 14

’é‘ . . 4 Clock Overlaps
Eo025 4 2 x
@ N a 1.2
E A . “ @
> a £
8 02 1 @
5 =
3 A
3 A 3
: a a AL . z
o Ao D as 0.8 €
€ 0.15 4 2 3
o . . W
g N s 2
< . " 0.6 H
@ 01 4 =
] - A
& 4 a faer o 0.4 3
[¥] . .
= A & . A o ‘
3 s - [ 23 . ET Y
800 Wi Lt pon T e e 02

LN A R e e LR AN

0 & - 0
1-may 31-may 30-jun 30-jul 29-ago
Date

Figure 6: Performances of GLONASS Products

PPP PERFORMANCE

Figure 7 presents the positioning performances of PPP at
several IGS stations of known coordinates, when the
observation time is 1 day. It can be seen that the accuracy
of the PPP solution (vs the coordinates published by the
IGS) is around 1 cm, both for GPS and GPS+GLONASS.
This test illustrates the good quality of the reference
products (both for GPS and for GLONASS) as well as the
level of performances of the PPP algorithm.
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An observation time of 24 hours is adequate for a high
accuracy post-processing solution, but is not very suited
to field measurement, where shorter measurement
intervals would be more practical. Figure 8 shows the
performances of Static PPP of one IGS station selected as
test user (GLSV), for different observation times ranging
from 1 to 24 hours. The results for GPS-only and
GPS+GLONASS are shown together for comparison. It
can be clearly seen that there is a benefit from longer
observation time with a significant improvement after 3
hours. For 1-hour observation time, there is also a
significant improvement coming from the multisystem
configuration.
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Figure 8: Static PPP Performances at GLSV

In the following example, PPP with 1-hour observation
time performances are presented for the test station GLSV,
considering the 1-hour observation intervals starting at
different times of the same day. It can be seen that when
the observation time is short, GPS+GLONASS improves
significantly the repeatability of the results, thus providing
more stable results along time.
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Figure 9: Repeatability of 1-hour PPP solutions at
GLSV

The previous results present multi-system PPP as an
interesting option for precise positioning, since sub-dm
accuracy (sometimes much better) can be reached with 1-
hour observation time. The latency with which the solution
can be obtained depends only on the latency of the
reference products. Real-time generation of products
implies that the solution is available immediately after the
collection of the measurements (the PPP processing time is
almost negligible).

The main application of real-time PPP, however, is
kinematic positioning. A kinematic version of magicGNSS’
PPP algorithm is under development. The initial version,
already available, supports only off-line processing. A real-
time version is planned for the coming months.

In order to evaluate the performances, a receiver was
installed on the roof of a van, and data were recorded
during a 30-min drive in Tres Cantos’ surrounding
countryside. The data (GPS only in this case) were then
processed off-line with the new kinematic PPP and
compared with a reference trajectory. This reference path
was calculated with RTK, using a reference station
installed at GMV premises (a few km away). The
difference between the solutions versus time (over the 30-
min drive) is shown in Figure 10.
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The results match up to a few cm. Additional tests in more
challenging visibility conditions and with other type of
users (e.g. flight trajectories) are currently on-going, with
very promising results as well. It is expected that the
addition of GLONASS will improve the performances in
more challenging visibility conditions.

STATIC IBPL SCENARIO

In order to evaluate the IBPL algorithm using
GPS+GLONASS we have used a Topcon Hyper dual-
frequency receiver, shown in Figure 11. This is a
surveying class portable receiver that can be mounted on
a tripod or on a magnetic base for a car roof. This flexible
setup allows carrying out static and kinematic tests in
different scenarios. The receiver records observations in
its internal memory, which are then converted to RINEX
format and processed in PPP/IBPL.

Figure 11: Topcon Hyper receiver

Static, open-sky GPS+GLONASS measurements were
recorded during around one week on the roof of the GMV
building near Madrid, Spain (July 20-26, 2010). The
results are shown in the following figures.

Figure 12 represents the horizontal position error
distribution. The position error is the difference between
the standalone code-based user position and the precise
position from PPP (considered as truth).

20 T ‘ ‘ T T
15 7
5 2
S
10 3
- £
5 2
3 5 15
< 2
£ £
w 2
=
£ -E 1
z 5
o
°
05
20 S S R N S
20 15 .10 5 0 5 10 15 20 0

East Error (meters)

Figure 12: Horizontal position error distribution

Figure 13 shows the evolution in time for the horizontal
error (in grey) and Protection Level (in red), for an
integrity risk @ = 10™ (this means a probability of
integrity failure of 0.01%). Figure 14 is the equivalent one
for the vertical error.
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Figure 13: Horizontal error and PL versus time
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Figure 14: Vertical error and PL versus time

Notice than during the 7 days the PL is nearly always
larger than the position error. This means that the PL
effectively overbounds the user error, within the given
integrity risk. This is in fact better observed on the
horizontal and vertical Stanford diagrams shown in Figure
15 and Figure 16, respectively. The horizontal results
show that the integrity fails around 0.02% of the time, as
compared to an a-priori failure probability of 0.01%. No
integrity failure is observed in the vertical component.
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Figure 15: Stanford diagram (Horizontal) for a = 10™
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Figure 17 shows the accumulated Protection Level
histograms corresponding to this static scenario, for all
integrity risks ranging from a = 10" to a = 107
Naturally, the size of the PL increases as the integrity risk
decreases. For example, for a = 107, 80% of the time the
PL is smaller than 20 m, but for & = 10™, 80% of the time
the PL is smaller than only 10 m. Figure 18 shows the
corresponding histograms for the vertical component.
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Figure 17: Horizontal PL histograms
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Figure 18: Vertical PL histograms

For comparison, the IBPL results have been recalculated
using GPS only, without using the GLONASS
measurements. The corresponding accumulated PL
histograms are shown in Figure 19 and Figure 20. By
comparison to Figure 17 and Figure 18, the reduction of
PL size when using GPS+GLONASS is quite dramatic
with respect to the GPS-only solution.
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Figure 19: Horizontal PL histograms (GPS-only)
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Figure 20: Vertical PL histograms (GPS-only)

KINEMATIC IBPL SCENARIO

In order to evaluate the IBPL concept in a kinematic
scenario, our Topcon Hyper receiver was mounted on the
roof of a van and taken on a circular tour in an open-sky
environment near GMV offices in Madrid. The loop is
shown in Figure 21. The duration of the test was around
30 minutes, with a driving distance of around 2.5 km.

Figure 21: Test route for kinematic IBPL

The collected GPS+GLONASS data in RINEX format
was processed in PPP/IBPL. The reference trajectory
calculated by PPP (truth) is estimated to have a 2-cm
horizontal error and a 3-cm vertical error (RMS).

Figure 22 shows the evolution in time for the horizontal
error (in grey) and Protection Level (in red), for an
integrity risk = 10, over the 30-min route. Figure 23 is
the equivalent one for the vertical error. By comparison to
Figure 13 and Figure 14, it turns out that the PL size and
position error overbounding characteristics are similar in
the kinematic and static scenarios.
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Figure 23: Vertical error and PL versus time

The corresponding horizontal and vertical Stanford
diagrams shown in Figure 24 and Figure 25, respectively.
No integrity failures are observed in the horizontal or
vertical components during the test, as compared to an a-
priori failure probability of 0.01% (a = 10™).
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Figure 24: Stanford diagram (Horizontal) for & = 10™
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Figure 25: Stanford diagram (Vertical) for a =10

Figure 26 shows the accumulated Protection Level
histograms corresponding to this kinematic scenario, for
all integrity risks ranging from & = 10" to a = 107, Figure
27 the corresponding histograms for the vertical
component. By comparison to Figure 17 and Figure 18, it
turns out that the PL sizes and histogram patterns are
similar in the kinematic and static scenarios.
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Figure 26: Horizontal PL histograms
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Figure 27: Vertical PL histograms
LONG-TERM STATIC IBPL SCENARIO

A final test has been carried out to test the IBPL
performance in a long-term static scenario. For this
purpose 200 days of measurements were processed from
the WTZR station in Germany. RINEX data rate is 30 sec,
which gives more than half a million position samples
over the 200 observation days.

As an example let us analyze integrity risks 10 and 10°.
For a @ = 10° one would a priori expect around 5
integrity failures over the half-million position instances.
For a @ = 10 zero or one integrity failure could be
expected. The actual processing results are shown in
Figure 28 to Figure 31. The a posteriori figures show 1
and 12 integrity failures for @ = 10” in the horizontal and
vertical components, respectively, and no integrity
failures for @ = 10°. PL accumulated histograms (not
shown here) present similar patterns to the short-term
cases presented above, with horizontal PLs smaller than
20 m 80% of the times even for & = 107
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Figure 28: Long-term Stanford diagram (Horizontal)
for a =107
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Figure 29: Long-term Stanford diagram (Vertical)
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Figure 30: Long-term Stanford diagram (Horizontal)
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INTEGRATION IN MAGICGNSS

In 2008 GMV introduced magicGNSS, a web application
for high-precision GNSS data processing [5], [6].
magicGNSS is available at http://magicgnss.gmv.com.

The integration of the IBPL and PPP concepts based on
RINEX file processing is very convenient and powerful
for autonomous integrity demonstration and validation.
On one side, PPP allows calculating the #rue position of
any single receiver, with a cm-level error, anywhere on
the world. The knowledge of the frue position allows
calculating the actual error in the single-frequency
pseudorange-based stand-alone position.

By comparing the instantaneous protection levels coming
from IBPL with the actual position error, one can generate
long-term statistics about integrity performances. Since
the combined technique is autonomous and global, the
only necessary inputs are dual-frequency RINEX
measurement files from a static receiver located
anywhere. This allows testing and validating the IBPL
concept in many different scenarios, for example in
environments of reduced satellite visibility, or in countries
with a high ionospheric activity.

The IBPL module implemented in magicGNSS allows
processing past and recent data from 30 selected
GPS+GLONASS core stations from IGS, Ilocated
worldwide. The user can also upload RINEX files via web
of ftp and thus compute IBPL for his own static
receiver/station. PPP is carried out automatically prior to
IBPL computations, using the first day of the processing
interval. Core station data availability allows processing
long-term GPS+GLONASS scenarios and generating
integrity statistics since January 1, 2010, until current
time. Only static PPP/IBPL is supported at present,
kinematic data processing will be supported in the near
future.

CONCLUSIONS AND FUTURE WORK

We have shown that using combined GPS+GLONASS
data in IBPL much reduces PL sizes as compared to the
GPS-only solution.

Precise Point Positioning (PPP) is an effective and
convenient way of validating IBPL performance (to
calculate the #rue receiver position).

Open-sky GPS+GLONASS IBPL results show promising
performances. Tests in urban and other difficult
environments are still to be done.

IBPL might be applicable to carrier-phase cm-level
positioning (RTK, PPP) for precise-positioning integrity.
We intend to explore this possibility in the future.
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